Board Policy: EL-7 Communication and Support to the Board
The BAOs shall inform and support the Board in its work.

CEO BULLETIN / NEWSLETTERS

4 CEO Bulletin: 12/08/17 – 12/14/17
5 Water Tracker: 12/01/17

BOARD MEMBER REQUESTS & INFORMATIONAL ITEMS

8 BMR/IBMR Weekly Reports: 12/14/17
 Memo from Ngoc Nguyen, Interim DOO – Watersheds Design & Construction, to Norma Camacho, CEO, dated 12/01/17, regarding the Final Initial Study/Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program and Approval of the Cunningham Flood Detention Facility Certification Project.
 Memo from Michele King, COB, to the Board, dated 12/11/17, regarding the Economic Evaluation of the Open Space Credit Report (R-17-0035).

INCOMING BOARD CORRESPONDENCE

89 Board Correspondence Weekly Report: 12/15/17
90 Email from Celia Fabos-Becker to the Board, dated 12/09/17, regarding recycled water (C-17-0429).
93 Email from Patricia Juarez to the PUC (cc: BOD), dated 12/08/17, regarding a petition to replace SJWC with a municipal utility company (C-17-0430).
102 Letter from Eric Thornburg, CEO/SJWC, to Chair Varela, dated 12/06/17, thanking him for their meeting (C-17-0431).
103 Letter from Eric Thornburg, CEO/SJWC, to Vice Chair Santos, dated 12/06/17, thanking him for their meeting (C-17-0432).
104 Email from Jim Blickenstaff to Director Kremen, dated 12/13/17, regarding the December 19, 2017 Special Board Meeting (C-17-0433).
106 Letter from Lisa Borba, Board President/Contra Costa Water District, to the Board, dated 12/12/17, regarding support for the evaluation of the proposed Regional Recycled Water Exchange Project (C-17-0434).
107 Email from Zara Ashtiani to Director LeZotte, dated 12/14/17, regarding poor water quality in Almaden (C-17-0435).
Email from Margaret Best to Director LeZotte, dated 12/13/17, regarding poor water quality in Almaden (C-17-0436).

Email from Subodj Raj to Director LeZotte, dated 12/13/17, regarding poor water quality in Almaden (C-17-0437).

Email from George Clark to Director LeZotte, dated 12/13/17, regarding poor water quality in Almaden (C-17-0438).

Email from Swanee Edwards to the Board, dated 12/14/17, regarding the Chair’s response to her email about fracking (C-17-0439).

OUTGOING BOARD CORRESPONDENCE

Reply email from Chair Varela to PJ Darling, dated 12/04/17, regarding repair to fencing along 101 between Coyote Creek and Cochrane exits (C-17-0421).

Reply email from Chair Varela to Anthony Bandalan, dated 12/08/17, regarding expansion of the Rinconada Water Treatment Plant (C-17-0422).

Letter from Chair Varela to Roger Castillo, Board President/GCRRCD, regarding the Fish and Aquatic Habitat Collaborative Effort.

Letter from Director LeZotte to Richard McMurtry, dated 12/13/17, regarding the FAHCE Ad Hoc Committee’s response to his letter to the CIP Ad Hoc Committee.

Email from Chair Varela to Swanee Edwards, dated 12/14/17, regarding fracking (C-17-0425).

Board correspondence has been removed from the online posting of the Non-Agenda to protect personal contact information. Lengthy reports/attachments may also be removed due to file size limitations. Copies of board correspondence and/or reports/attachments are available by submitting a public records request to publicrecords@valleywater.org.
CEO BULLETIN
Board Executive Limitation Policy EL-7:
The Board Appointed Officers shall inform and support the Board in its work. Further, a BAO shall 1) inform the Board of relevant trends, anticipated adverse media coverage, or material external and internal changes, particularly changes in the assumptions upon which any Board policy has previously been established and 2) report in a timely manner an actual or anticipated noncompliance with any policy of the Board.

IN THIS ISSUE

<table>
<thead>
<tr>
<th>Page</th>
<th>IN THIS ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kremen</td>
</tr>
<tr>
<td></td>
<td>Staff to provide the board with a copy of the August 15, 2013, Report, "Economic Evaluation of the Open Space Credit."</td>
</tr>
<tr>
<td></td>
<td>17-0035</td>
</tr>
<tr>
<td>2</td>
<td>Santos</td>
</tr>
<tr>
<td></td>
<td>Staff to provide a copy of the Santa Clara Valley Agriculture Preservation Plan to the members of the Agricultural Advisory Committee.</td>
</tr>
<tr>
<td></td>
<td>17-0036</td>
</tr>
</tbody>
</table>

Kremen
Staff to provide the board with a copy of the August 15, 2013, Report, "Economic Evaluation of the Open Space Credit."
17-0035

For further information, please contact Michele King at (408) 630-2711.

Santos
Staff to provide a copy of the Santa Clara Valley Agriculture Preservation Plan to the members of the Agricultural Advisory Committee.
17-0036

On Friday, December 15, 2017, a copy of the Santa Clara Valley Agriculture Preservation Plan was sent to the Agricultural Advisory Committee Members and the Board Committee Representatives.

For further information, please contact Michele King at (408) 630-2711.
Outlook as of December 1, 2017

We began calendar year 2017 with groundwater storage in the low end of Stage 1 (Normal) of the District’s Water Shortage Contingency Plan. Through District managed recharge efforts, as well as natural recharge, the current projection is that there will be about 330,000 acre-feet of usable groundwater storage at the end of 2017. Groundwater levels and storage have recovered to pre-drought conditions and permanent subsidence has been avoided due to the proactive drought response by the District, water retailers, and the community.

Due to improved conditions, the District also continues to replenish storage in the Semitropic Water Bank that was utilized during the recent drought. So far this year, the District has stored over 60,000 acre-feet of imported water supplies in the Semitropic Water Bank and plans to add an additional 5,000 acre-feet by the end of the year.

Weather

- Rainfall in San Jose
 - Month of November = 1.30 inches
 - Rainfall year total = 1.42 inches or 57% of average to date (rainfall year is July to June 30)
 - The average daily high temperature for November was 68.8 degrees Fahrenheit. Temperatures were above normal for the month

Local Reservoirs

- Total December 1 storage = 52,441 acre-feet
 » 73% of 20-year average for that date
 » 31% of total capacity
 » 46% of restricted capacity (169,009 acre-feet total storage capacity limited by seismic restrictions to 113,667 acre-feet)
- Approximately 700 acre-feet of imported water was delivered into local reservoirs during November 2017
- Total estimated releases to streams (local and imported water) during November was 9,000 acre-feet

Groundwater

- Groundwater (GW) Storage: Total storage at the end of 2017 is predicted to fall within Stage 1 (Normal) of the District’s Water Shortage Contingency Plan.

<table>
<thead>
<tr>
<th></th>
<th>Santa Clara Subbasin</th>
<th>Llagas Subbasin</th>
</tr>
</thead>
<tbody>
<tr>
<td>November managed recharge estimate (AF)</td>
<td>5,600</td>
<td>900</td>
</tr>
<tr>
<td>January to November managed recharge estimate (AF)</td>
<td>58,100</td>
<td>9,600</td>
</tr>
<tr>
<td>January to November managed recharge, % of 5-year average</td>
<td>120%</td>
<td>99%</td>
</tr>
<tr>
<td>October pumping estimate (AF)</td>
<td>7,100</td>
<td>1,200</td>
</tr>
<tr>
<td>January to October pumping estimate (AF)</td>
<td>61,200</td>
<td>11,200</td>
</tr>
<tr>
<td>January to October pumping, % of 5-year average</td>
<td>87%</td>
<td>118%</td>
</tr>
<tr>
<td>GW index well level compared to last November</td>
<td>Increase</td>
<td>Increase</td>
</tr>
</tbody>
</table>

AF = acre-feet

continued on back
Imported Water

- 2017 State Water Project (SWP) and Central Valley Project (CVP):
 - 2017 SWP allocation: 85% announced on April 14, 2017, provides 85,000 acre-feet
 - M&I water service allocation: 100%, District’s M&I allocation is 119,400 acre-feet
 - Agricultural water service allocation: 100%, or 33,100 acre-feet
 - Initial 2018 SWP allocation: 15% = 15,000 acre-feet announced on November 30, 2017
 - Reservoir storage information, as of November 30, 2017:
 - Shasta Reservoir at 71% of capacity (119% of average for this date)
 - Oroville Reservoir at 36% of capacity (59% of average for this date)
 - San Luis Reservoir at 74% of capacity (124% of average for this date)
 - District’s Semitropic groundwater bank reserves are 245,380 acre-feet as of October 31, 2017
 - Estimated SFPUC deliveries to Santa Clara County:
 - Projected month of November = 3,691 acre-feet
 - 2017 Total to Date = 40,653 acre-feet
 - Five-year annual average is 48,700 acre-feet

Treated Water

- Below average demands of 6,596 acre-feet delivered in November
- This total is 91% of the five-year average for the month of November
- Year-to-date deliveries = 97,733 acre-feet or 94% of the five-year average

Conserved Water

- Saved 72,000 acre-feet in FY17 from long-term program (baseline year is 1992)
- Long-term program goal is to save nearly 75,000 acre-feet in FY18
- The Board has called for a 20% reduction and a limit of three days per week for irrigation of ornamental landscape with potable water
- Achieved a 22% reduction in water use through the first ten months of 2017, compared to 2013

Recycled Water

- Estimated November 2017 production = 900 acre-feet
- Estimated Year-to-Date through November = 15,900 acre-feet or 84% of the five-year average
- Silicon Valley Advanced Water Purification Center produced an estimated 1.3 billion gallons (3,900 acre-feet) of purified water in 2016. Since the beginning of 2017, about 4,000 acre-feet of purified water has been blended with existing tertiary recycled water for South Bay Water Recycling Program’s customers

CONTACT US

For more information, contact Customer Relations at (408) 630-2680 or visit our website at valleywater.org and use our Access Valley Water customer request and information system. With three easy steps, you can use this service to find out the latest information on district projects or to submit questions, complaints or compliments directly to a district staff person.

Follow us on:
BOARD MEMBER REQUESTS & INFORMATIONAL ITEMS
<table>
<thead>
<tr>
<th>Request</th>
<th>Completed</th>
<th>Meeting Date</th>
<th>Director</th>
<th>GM / AGM</th>
<th>Description</th>
<th>20 Days Due Date</th>
<th>Expected Completion Date</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-16-0021</td>
<td>Pending</td>
<td>04/12/16</td>
<td>Keegan</td>
<td>Stanton</td>
<td>Staff to take a preliminary look at the use of PLAs on Non-federal District projects.</td>
<td>03/22/17</td>
<td>03/02/17 Continued. 07/28/16 CEO Bulletin.</td>
<td></td>
</tr>
<tr>
<td>R-17-0032</td>
<td>Pending</td>
<td>09/26/17</td>
<td>Keegan</td>
<td>Richardson</td>
<td>Staff to provide the Board with proactive options to address unauthorized access to District property and the dumping of trash and debris. See memo dated 09/01/2017 Handout 11.1-A.</td>
<td>10/17/17</td>
<td>10/27/17</td>
<td>10/19/17 CEO Bulletin.</td>
</tr>
<tr>
<td>R-17-0032</td>
<td>Pending</td>
<td>09/26/17</td>
<td>Kremen</td>
<td>Callender</td>
<td>Staff to provide the Board with an update on the District's education program.</td>
<td>10/17/17</td>
<td>11/01/17 Information Only.</td>
<td></td>
</tr>
<tr>
<td>R-17-0035</td>
<td>Pending</td>
<td>11/28/17</td>
<td>Kremen</td>
<td>King</td>
<td>Staff to provide the Board with a copy of the August 15, 2013 Report, "Economic Evaluation of the Open Space Credit".</td>
<td>12/18/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-17-0036</td>
<td>Pending</td>
<td>11/28/17</td>
<td>Santos</td>
<td>King</td>
<td>Staff to provide a copy of the Santa Clara Valley Agriculture Preservation Plan to the members of the Agricultural Advisory Committee.</td>
<td>12/18/17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request</td>
<td>Completed Date</td>
<td>Request Date</td>
<td>Director</td>
<td>GM / AGM</td>
<td>Description</td>
<td>20 Days Due Date</td>
<td>Expected Completion Date</td>
<td>Disposition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>I-17-0013</td>
<td>Pending</td>
<td>10/24/17</td>
<td>Kremen</td>
<td>Hawk</td>
<td>Director Kremen requested that Kurt Arends provide information regarding the electrical loads for our facilities in the area that require power.</td>
<td>11/20/17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The District prepared a Final Initial Study/Mitigated Negative Declaration (IS/MND) for the proposed Cunningham Flood Detention Facility Certification Project (Project) to fulfill the District’s lead agency responsibilities under the California Environmental Quality Act (CEQA). The District is responsible for funding the Project, constructing the proposed improvements, and operating and maintaining the flood levee and flood wall after construction is complete.

The Project is subject to the California Environmental Quality Act (CEQA) as the Project requires discretionary approval requiring the exercise of judgement or deliberation by the District Board of Directors and the activities would be directly undertaken by the District as a public agency, which include public works construction activities, clearing or grading of land, improvements to existing public structures which may cause either a direct physical change in the environment, or a reasonably foreseeable indirect physical change in the environment. The Final IS/MND is being submitted to the Board for their information prior to the Board meeting scheduled for January 9, 2018.

The proposed Project is situated within Lake Cunningham Regional Park in the southeast section of San Jose and is just upstream of the District’s Lower Silver Creek Flood Protection Project. Lake Cunningham Park was designed and constructed in accordance with the park’s Master Plan originally developed in 1976 by the City of San Jose (City) to function dually as a recreational and flood detention facility. Lower Silver, Flint, and Ruby Creeks flow along the perimeter of the park. The park area functions as a detention basin and attenuates the 100-year flood peak flow from upstream. However, the detention facility does not have sufficient freeboard for it to be certified by the Federal Emergency Management Agency (FEMA). To meet this objective, the District is proposing to raise the existing levee ranging from 0 to 4 feet high along Capitol Expressway and Cunningham Avenue and adjacent to Lower Silver Creek, and to construct a floodwall ranging from 2 to 4 feet in height along Cunningham Avenue and Flint Creek. These improvements are necessary to satisfy FEMA freeboard requirements for flood protection facilities. Other Project elements include in-kind replacement of the existing chain-link fence along the Cunningham Avenue park frontage, relocation of an existing trash compactor and greenwaste collection area; removal of concrete slabs at the existing trash compactor and greenwaste collection area, construction of a new pedestrian path, and regrading of approximately 70 feet of trails near the Lake Cunningham shoreline. See Attachment 2 for a map of the project area and project elements.

Once completed with these improvements, the District and the City will apply to FEMA to certify the levee and floodwall that would remove about 3,200 parcels from the flood hazard area, eliminating the requirement for homeowners to purchase flood insurance.

Pursuant to the California Environmental Quality Act (CEQA), the District, as the lead agency for the Project, prepared a Final IS/MND, which is included in this Memo for Board’s consideration prior to
subject: Non-Agenda Item – Final Initial Study/Mitigated Negative Declaration and Mitigation Monitoring and Reporting Program, and Approval of the Cunningham Flood Detention Facility Certification Project – Project No. 40264011

approving the Project. The Draft IS/MND was circulated for public review from July 20, 2017 to August 21, 2017.

District staff has prepared a Final IS/MND addressing comments received from the Draft IS/MND and mitigation measures documented in the Mitigation Monitoring and Reporting Program (MMRP). As discussed in the attached Final IS/MND, the Project would result in no or less than significant impacts in all resource areas except biological resources, cultural resources, and tribal cultural resources. However, potentially significant impacts in these areas would be reduced to a less than significant level with implementation of mitigation measures proposed in the Final IS/MND and included in the MMRP (Appendix D of the Final IS/MND).

The potentially significant and unavoidable impacts are:

- San Francisco dusky-footed woodrat, a special-status animal species, has the potential to occur at the Project site;
- Approximately 61 trees within Lake Cunningham Park are proposed to be removed;
- Potential for the discovery of archeological resources or human remains during construction activities based on previous archaeological investigations completed for Lake Cunningham Park.

Prior to approving the Project, CEQA requires the Board to review and consider the information contained in the Final IS/MND. When adopting the Final IS/MND, the Board will also need to adopt the MMRP (included in Appendix D of the Final IS/MND) with respect to each potentially significant environmental impact of the project.

Ngoc Nguyen
Interim Deputy Operating Officer
Watersheds Design and Construction Division

Attachments:

1. Final IS/MND (complete report is located at http://valleywater.org/CunninghamFloodDetentionDocs/)
2. Site Map with Proposed Improvements (PDF)

cc: CEQA Administration File, Project File, Karl Neuman, Zhen Shao, Jennifer Castillo, Tim Tidwell, Kurt Lueneburger
FEDERAL ISSUES

Washington D.C. Trip Update November 6–8

From November 6–8, 2017, Director Barbara F. Keegan, CEO Norma J. Camacho, Chief of External Affairs Rick L. Callender, Interim DAO for Office of Government Relations Rachael Gibson, DOO of Water Utility Capital Division Katherine Oven, and Engineering Manager Rechelle Blank attended the District’s annual advocacy trip to Washington, D.C.

The District team met with elected officials, Administration officials, regulatory agency staff, and other key Washington D.C. staff to advocate for flood protection, water infrastructure, water supply, recycled water projects, legislation, funding, authorization, Board-supported legislation, and other critical issues. Meetings were held with the County’s elected delegation and other key legislators, Congressional Committee staff, administrative agencies, and the White House Council on Environmental Quality.

These meetings allowed the District to speak directly with decision makers at the federal level to provide updates and engage in vigorous advocacy to advance the District’s key flagship projects and issues. Specifically, this comprehensive approach provided the District with the opportunity to discuss projects and priorities, including:

- South San Francisco Shoreline Project—Advocate for funding and construction new start authorization

- Upper Guadalupe River Flood Protection Project, Llagas Creek Flood Protection Project, San Francisquito Creek Flood Protection Project, San Luis Point Improvement Project, and advocate for funding for FY18 and FY19

- Pacheco Reservoir Expansion Project-advocate for funding paths including establishing a federal interest in the project

- Tax Policy changes favorable to P3s and Private Activity Bonds

- Anderson Dam Seismic Retrofit Project-advocate for Congress to introduce a Dam Evaluation, Rehabilitation and Repair Act and advocate for funding of Federal Management Agency’s (FEMA) grant program for rehabilitation of high hazard potential dams under the Water Infrastructure Improvements of the Nation (WIIIN) Act

The overall trip was very successful for the District and the Office of Government Relations (OGR) will be following up on all requests and action items received in the meetings.
Federal Legislation with Board-Approved Positions

<table>
<thead>
<tr>
<th>Bill</th>
<th>Author</th>
<th>Subject</th>
<th>District Position</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 698</td>
<td>Cantwell</td>
<td>National Landslide Preparedness Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>S 731</td>
<td>Feinstein</td>
<td>Sacramento-San Joaquin Delta National Heritage Area Establishment Act</td>
<td>Support</td>
<td>On March 30, 2017 — Full committee consideration and markup held by the Senate Energy and Natural Resources Committee.</td>
</tr>
<tr>
<td>S 1700</td>
<td>Udall</td>
<td>Water Efficiency Improvement Act of 2017</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 434</td>
<td>Denham</td>
<td>New WATER Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 448</td>
<td>Huffman</td>
<td>Water Conservation Rebate Tax Parity Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 1269</td>
<td>LaMalfa</td>
<td>Sacramento Valley Water Storage and Restoration Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 1738</td>
<td>Garamendi</td>
<td>Sacramento-San Joaquin Delta National Heritage Area Establishment Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 2799</td>
<td>McNerney</td>
<td>Western Water Recycling and Drought Relief Act</td>
<td>Support and Amend</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 3275</td>
<td>McNerney</td>
<td>Water and Energy Sustainability through Technology Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
<tr>
<td>HR 3604</td>
<td>Loebsack</td>
<td>National Flood Research and Education Center Act</td>
<td>Support</td>
<td>No hearing dates set.</td>
</tr>
</tbody>
</table>
Shoreline Construction New Start Designation

Staff has engaged in a robust advocacy effort with a broad coalition including elected officials, business and labor organizations, chambers of commerce, and grassroots advocacy organizations, to advocate for a Construction New Start Authorization for the Shoreline Project. The Construction New Start Authorization is required for construction to begin for this regionally significant project, which will provide vital flood protection from 1-percent tidal flooding in urban areas adjacent to the South San Francisco Bay, restore up to 25 square miles of habitat, and provide public access and recreation for our Santa Clara County residents.

The success of the Construction New Start Authorization process for the Shoreline Project rests with it being successfully reviewed and approved by the United States Army Corps of Engineers (USACE), the Office of the Assistant Secretary of the Army for Civil Works, and the Office of Management and Budget (OMB), while the OMB makes the final recommendation as to whether or not the Construction New Start Authorization will be granted. Even though Congress informs the Administration as to how many Construction New Start projects they can select per year, (which tends to be about six Construction New Starts annually for the entire country), it is ultimately the Administration that makes the final determination as to whether or not the Construction New Start Authorization will be granted for the Shoreline Project. OGR will continue aggressive advocacy toward this end until a decision has been rendered.

STATE ISSUES

District-Sponsored State Legislation

SB XXX (Wieckowski) Shoreline Project State Flood Subventions Authorization

Senator Wieckowski has agreed to author the District’s sponsored bill to add the San Francisco Bay Shoreline Project to the list of authorized projects to receive state flood subventions funding reimbursements. The bill would provide the District the ability to seek reimbursement for the expected purchase of temporary rights-of-way and relocations for flood control, recreation, fish and wildlife enhancements, and temporary work area easements for construction staging and hauling routes, which could cost between $4–7M.

Next steps are to submit bill language to Legislative Counsel for official drafting. The expected introduction date would be in January once the 2018 legislative session begins.

SB 519 (Beall) District Act Revisions

Conversations with Senator Beall’s office regarding the next steps for SB 519 continued in November with the Senator’s staff reconfirming a commitment to proceed with the following two provisions:

1. Reform Special Tax Exemption Processing for Low-Income Seniors: Provide that any exemption from a qualified special tax granted to a senior or disabled taxpayer will remain in effect, without further verification, until the taxpayer becomes ineligible for the exemption.
2. **District Board Vacancy Appointment Reform**: Requires the appointment to a vacant seat on the District Board be made from the geographic district in which the vacancy exists rather than from anywhere in Santa Clara County.

OGR staff continues to work with Senator Beall’s office on a possible change to the number of District Board meeting days available for remuneration pursuant to state law. The Senator has indicated he would like to move SB 519 in January as required by legislative rules rather than introduce a new bill. Under this process, the bill would be amended in the first week of January and then proceed through policy and fiscal committees, as well as pass the Senate floor before a January 31, 2018, deadline.

SB 594 (Beall) Expedited Permitting for Human Life Safety: Flood Risk Reduction & Dam Safety Enhancement

Senator Beall indicated in November that this bill is a “work in progress” and it may or may not go forward in 2018 as currently drafted. The legislation as currently proposed would require permitting agencies to expedite permit processing and approval for dam safety and other flood-risk reduction projects that maintain or improve human life safety. OGR staff is working to develop new alternatives to expedite state regulatory permitting, including new legislative concepts and advocating for increased staffing at state permitting agencies, while also continuing to pursue the current bill.

SB 594 is now pending in the Senate and includes an urgency clause that not only requires a 2/3 vote by each house, but also allows the bill to move outside legislative deadlines. Its first stop would be Senate Environmental Quality Committee.

In addition to working with the Administration and the Legislature on bill development, District staff continued to build support for SB 594 at the fall conferences of ACWA and CSAC/CEAC. Agencies are generally interested in expediting high-priority projects, but typically suggest changes to enable their projects to be included. Discussions continue with key flood control and water agency stakeholders to see if a consensus on criteria for setting priorities can be found.

Pacheco Dam Expansion Project Proposition 1 Application

On November 15, OGR staff provided public comment to the California Water Commission (Commission) to voice support for Proposition 1 funding for the Pacheco Reservoir Expansion Project. OGR staff made statements on behalf of Assemblymember Kansen Chu, and on behalf of the San Jose/Silicon Valley Chapter of the NAACP. Also speaking in support of the Pacheco Project were a representative of the Santa Clara and San Benito Counties Building and Construction Trades Council and a spokesperson for Assemblymember Anna Caballero.

The Commission has made a finding that the District’s Pacheco Reservoir Expansion Project application for the Proposition 1 funding is complete. The commissioners have requested that proponents for all 11 projects seeking funding appear before them to present their projects on December 13. District staff has submitted the written presentation by the required deadline, and will be travelling to Sacramento to make the presentation.
State Legislation with Board-Approved Positions

Following is the status of bills on which the Board has adopted formal positions:

<table>
<thead>
<tr>
<th>Bill</th>
<th>Author</th>
<th>Subject</th>
<th>Position/Priority</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coyote Creek Flood Victim</td>
<td>Kalra</td>
<td>Coyote Creek flood victim assistance</td>
<td>Support</td>
<td>$5.4 million approved for flood victim case work assistance as part of the budget</td>
</tr>
<tr>
<td>Assistance Funding $10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bill 810</td>
<td>Governor</td>
<td>Making Water Conservation a California Way of Life</td>
<td>Support if Amended</td>
<td>Failed—Assembly and Senate Budget Committees</td>
</tr>
<tr>
<td>Budget Trailer Bill on Dam</td>
<td>Governor</td>
<td>Dam Safety</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB 18</td>
<td>E. Garcia</td>
<td>California Clean Water, Climate, Coast Protection, and Outdoor Access</td>
<td>Support if Amended</td>
<td>Failed—Senate Appropriations Committee</td>
</tr>
<tr>
<td>for All Act of 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB 388</td>
<td>Mullin</td>
<td>Greenhouse Gas Reduction Fund: wetland restoration projects</td>
<td>Support</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 574</td>
<td>Quirk</td>
<td>Potable reuse</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>AB 646</td>
<td>Kalra</td>
<td>Rental Property: disclosures: flood hazard areas: areas of potential flooding</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>AB 791</td>
<td>Frazier</td>
<td>SWP and CVP: new conveyance facility</td>
<td>Oppose</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 792</td>
<td>Frazier</td>
<td>Delta Plan: certification of consistency</td>
<td>Oppose</td>
<td>Failed—Assembly Water, Parks, and Wildlife Committee 2-Year Bill</td>
</tr>
<tr>
<td>Bill</td>
<td>Author</td>
<td>Subject</td>
<td>Position/Priority</td>
<td>Status</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>AB 793</td>
<td>Frazier</td>
<td>Delta: financing</td>
<td>Oppose</td>
<td>Failed—Assembly Water, Parks, and Wildlife Committee 2-Year Bill</td>
</tr>
<tr>
<td>AB 851</td>
<td>Caballero</td>
<td>Design Build</td>
<td>Sponsor</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>AB 968</td>
<td>Rubio</td>
<td>Urban water use: water efficiency</td>
<td>Support</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 979</td>
<td>Lackey</td>
<td>Local agency formation commissions: district representation</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>AB 1427</td>
<td>Eggman</td>
<td>Water: underground storage</td>
<td>Oppose</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 1587</td>
<td>Levine</td>
<td>Invasive species: dreissenid mussels</td>
<td>Support</td>
<td>Failed—Senate Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 1608</td>
<td>Kalra</td>
<td>Vibrant landscapes for California</td>
<td>Support</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>AB 1654</td>
<td>Rubio</td>
<td>Water shortage: urban water management planning</td>
<td>Support</td>
<td>Substantially Amended by Senate Natural Resources and Water Committee—Pending in Senate Rules Committee—2-Year Bill</td>
</tr>
<tr>
<td>AB 1667</td>
<td>Friedman</td>
<td>Agricultural water management planning (Mirrors Governor's Budget Trailer Bill Language)</td>
<td>Neutral</td>
<td>Pending—Senate Natural Resources and Water Committee—2-Year Bill</td>
</tr>
<tr>
<td>Bill</td>
<td>Author</td>
<td>Subject</td>
<td>Position/ Priority</td>
<td>Status</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>AB 1668</td>
<td>Friedman</td>
<td>Water management planning (Mirrors Governor's Budget Trailer Bill Language)</td>
<td>Support if Amended</td>
<td>Pending in Senate Rules Committee—2-Year Bill</td>
</tr>
<tr>
<td>AB 1669</td>
<td>Friedman</td>
<td>Urban water conservation standards and use reporting (Mirrors Governor's Budget Trailer Bill Language)</td>
<td>Support if Amended</td>
<td>Failed—Assembly Appropriations Committee—Suspense</td>
</tr>
<tr>
<td>SB 3</td>
<td>Beall</td>
<td>Affordable Housing Bond Act of 2018</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 5</td>
<td>De Leon</td>
<td>California Drought, Water, Parks, Climate, Coastal Protection, and Outdoor Access for All Act of 2018</td>
<td>Support if Amended</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 231</td>
<td>Hertzberg</td>
<td>Local Government fees and charges</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 252</td>
<td>Dodd</td>
<td>Water Wells</td>
<td>Oppose unless Amended, now Neutral</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 424</td>
<td>Allen</td>
<td>The California Regional Environmental Education Community Network</td>
<td>Support</td>
<td>Pending—Assembly Education Committee 2-Year Bill</td>
</tr>
<tr>
<td>SB 492</td>
<td>Beall</td>
<td>Midpeninsula Regional Open Space District: purchase of property: San Jose Water Company</td>
<td>Support</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 519</td>
<td>Beall</td>
<td>Santa Clara Valley Water District</td>
<td>Sponsor</td>
<td>Pulled by the author—Senate Governance and Finance Committee 2-Year Bill</td>
</tr>
<tr>
<td>Bill</td>
<td>Author</td>
<td>Subject</td>
<td>Position/ Priority</td>
<td>Status</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SB 606</td>
<td>Skinner</td>
<td>Water Conservation (Making Water Conservation a CA Way of Life)</td>
<td>Support if Amended</td>
<td>Pending—Assembly Third Reading—2-Year Bill</td>
</tr>
<tr>
<td>SB 634</td>
<td>Wilk</td>
<td>Santa Clarita Water District Agency</td>
<td>Oppose unless Amended, now Neutral</td>
<td>Signed by the Governor</td>
</tr>
<tr>
<td>SB 705</td>
<td>Allen</td>
<td>Solid Waste: expanded polystyrene food service containers</td>
<td>Support</td>
<td>Pending—Senate Inactive File—2-Year Bill</td>
</tr>
<tr>
<td>SB 740</td>
<td>Wiener</td>
<td>Onsite treated water</td>
<td>Support</td>
<td>Failed—Senate Appropriations Committee—Suspense</td>
</tr>
</tbody>
</table>

LOCAL AND REGIONAL ISSUES

Strong Engagement Continues for Festival Season

During the month of November, OGR staffed a community booth for the American Indian Heritage Celebration on November 5. The event was very well attended and provided the District with an opportunity to educate and engage our diverse community on priority District issues, initiatives, and programs, including the Anderson Dam Seismic Retrofit project and Pacheco Reservoir Expansion Project, among others. District participation in these events also allows the District to update event attendees about specific projects and upcoming events in those communities.

On November 18 and 19, as part of an approved sponsorship, the District assisted the local Puerto Rican community during a disaster relief drive to support those devastated by Hurricane Maria in Puerto Rico. The District provided help in picking up supplies from ten locations (nine fire stations and one police station) and had them delivered to the District warehouse for temporary storage.
Board Members Engage the Community on Water Issues

Each month, OGR facilitates and supports Board members' participation at water and legislative related forums, presentations, and other events across the county.

November 16—League of Women Voters' Lunch with League

On November 21, staff prepared remarks for and staffed Director Linda J. LeZotte for a Lunch with League event hosted by the League of Women Voters. Director LeZotte and staff provided an overview of current Coyote Valley and Coyote Creek flood protection actions, California WaterFix, and the proposed expansion of the Pacheco Reservoir.

Interim Deputy Administrative Officer
Office of Government Relations

rg:fd
MONTHLY REPORTS FROM
WASHINGTON D.C. AND SACRAMENTO

Contract Representatives

October 2017

(Please Note: The consultant reports will be one month behind due to the fact that monthly report of the Office of Government Relations is provided prior to the consultant reports being due).
MONTHLY REPORT
CARPI & CLAY

October 2017

On behalf of the Santa Clara Valley Water District (Water District), the report below summarizes the Federal Agency and Executive Branch activities advanced and monitored by Carpi & Clay during the month of October.

NOMINATIONS UPDATE

On October 4th, the President nominated R.D. James to serve as the Assistant Secretary of the Army for Civil Works. The White House press release announcing the nomination had this to say about Mr. James:

Mr. James has most recently served as a civilian member and engineer on the Mississippi River Commission, originally appointed in 1981 by President Ronald Reagan, where he provided water resources engineering direction and policy advice to several Administrations, Congress, and the Army for a drainage basin that covers roughly 41 percent of the United States. He is a self-employed farmer and manager of cotton gins and grain elevators in New Madrid, Missouri. Over the past 35 years, Mr. James has developed a wealth of knowledge about our nation’s critical infrastructure. He previously served as president of the Southern Cotton Ginners Association, he served on the board of directors and executive committee of the Southern Cotton Ginners Association, the Cotton Producers of Missouri, the Board of Directors of U.S. Bank of Sikeston, and the board of directors of Osceola Products. Mr. James is the recipient of the prestigious Bronze de Fleury medal for his significant contributions to Army engineering, the Sikeston Area Chamber of Commerce Agri-Business Award, and was formerly named the New Madrid County Outstanding Conservation Farmer. Mr. James received his degree in civil engineering from the University of Kentucky.

This position will require Senate confirmation which can take several months. The role of the ASA for Civil Works has been important for the advancement of the Water District’s U.S. Army Corps of Engineers (Corps) portfolio and we will work to establish a relationship between the Water District and Mr. James.

On November 6th, Ryan Fisher, Chief of Plan Formulation and Economics in the Corps Pittsburg District, was named the Principal Deputy Assistant Secretary of the Army for Civil Works (PDASA). This position does not require Senate confirmation. In the absence of an ASA in place, Mr. Fisher assumes both the PDASA and Acting ASA roles and will do so until President Trump’s nominee for the ASA, RD James, is confirmed by the full senate.

President Trump announced the nomination of Kirstjen Nielson to serve as Secretary of Homeland Security. Nielson was former Secretary John Kelly’s top aide at DHS and followed him to the White House when he became President Trump’s Chief of Staff. Nielson previously served as a homeland security adviser to President George W. Bush and served in the Transportation Security Administration. She also has a strong background in cybersecurity. Confirmation hearings on her nomination may begin before early December.
The President nominated AccuWeather CEO Barry Myers to lead the National Oceanic & Atmospheric Administration (NOAA). NOAA is a component of the Department of Commerce and oversees the National Marine Fisheries Service among other functions.

President Trump has nominated Kathleen Hartnett White, the director of the Armstrong Center for Energy and the Environment at the Texas Public Policy Foundation, to lead the Council on Environmental Quality (CEQ). Through a series of Executive Orders, President Trump has put CEQ in the lead for formulating a broad agenda of streamlining the environmental reviews of infrastructure across the nation. She has previously served as the chairman and commissioner of the Texas Commission on Environmental Quality.

The President has also nominated Andy Wheeler to be Deputy Administrator of the EPA. Wheeler served for 14 years on the professional staff of the Senate Committee on Environment & Public Works, including time as staff director and counsel. Earlier in his career, Wheeler served as a special assistant at EPA in the toxics office.

The Senate Environment and Public Works Committee approved the nominations of David Ross to head the EPA’s Office of Water and three other EPA nominations. No time has been set for the full Senate to vote on the nominees.

Secretary of the Interior Ryan Zinke announced the appointment of the following Californians within Interior. These positions do not require Senate confirmation.

• Jason Larrabee—Principal Deputy Assistant Secretary for Fish and Wildlife and Parks. Larrabee has served as Chief of Staff for Representative Jeff Denham (R-Modesto) for seven years and earlier handled water appropriations work for former Representative John Doolittle.

• Austin Ewell—Deputy Assistant Secretary for Water and Science. Ewell is from Fresno where he ran a consultancy that handled water rights, mitigation, and natural resource regulatory issues.

The President has not yet nominated anyone to serve as Assistant Secretary for Water & Science. The Senate has still not voted on the confirmation of Brenda Burman to serve as Commissioner of Reclamation.

U.S. ARMY CORPS OF ENGINEERS STAFFING CHANGES

General Semonite, the 54th Chief of Engineers and the Commanding General of the Corps has announced several staffing changes which will take place over the course of the fall calendar. They include:

Tab Brown will become the new Regional Business Director for the Corps South Atlantic Division based in Atlanta, GA. In his role as Chief of Planning and Policy, Tab helped to shepherd through the South San Francisco Shoreline Chief Reports and has been helpful in efforts to initiate a new feasibility study for the Rock Springs area. A successor has not yet been announced.

Eric Hansen will become the new Regional Business Director for the Corps Northwestern Division based in Portland, Oregon. The Water District met with Mr. Hansen on a regular basis in his role as the Deputy Assistant Secretary for Civil Works for Management and Budget. A successor has not yet been announced.
David Leach will become the new Deputy Assistant Secretary of the Army for Project Planning and Review. This role was previously occupied by Doug Lamont who played a critical role in several of the Water District’s policy and funding decisions.

INFRASTRUCTURE UPDATE

The Trump Administration continues to develop a “package of principles” for infrastructure legislation and has now said that these will be unveiled once Congress finishes work on taxes. According to the White House, this package will address the following goals:

• Incentivizing state and local infrastructure “owners” to develop new revenue streams to provide ongoing funding for transportation, water, energy, and communications infrastructure, particularly in metropolitan areas and including the use of public-private partnerships;

• Providing block grants for rural projects;

• Facilitate large, “transformative” projects; and

• Increasing the size and scope of existing leveraging opportunities through programs such as TIFIA, WIFIA, and the expanded use of private activity bonds.

The White House still supports the goal of providing $200 billion in new federal spending across all infrastructure sectors that can leverage up to $1 trillion in investment from non-federal sources. The outcome of tax legislation could affect the shape of the coming infrastructure debate in significant ways.

The White House has floated the idea of supporting a 7-cent per gallon hike in the gas tax, either as part of a tax bill or coupled with a later infrastructure bill. The idea has generally received a cool reception on Capitol Hill, but has not been rejected outright. A 7-cent hike would raise about $119 billion over 10 years for either the highway trust fund or to offset other tax cuts.

In January, the Trump Administration announced a goal of passing a large infrastructure package before August. As the timeline for consideration has continued to slip and it now looks like it will be on the agenda for early 2018, concerns are rising that it will become trapped in election year politics.
MONTHLY REPORT
KADESH & ASSOCIATES

October 2017

The House and Senate were each in for only two weeks each during the month of October.

In October, Congress continued the FY18 budget process and both chambers passed the budget resolution. The House vote was 216-212. In addition to providing reconciliation instructions and expedited consideration of tax reform, the budget resolution also set the FY18 discretionary spending level at $1.065 trillion which is consistent with the Budget Control Act and a $5 billion reduction from last year. The budget resolution does not address sequestration which is due to kick in at the end of the year unless a deal is reached.

The current continuing resolution and the debt ceiling both expire on December 8. To date, the House has completed work on its FY18 appropriation bills, but the Senate has four bills remaining for markup. At some point, appropriations staff will abandon markup efforts and will turn to preparing for conference. The budget talks and tax reform efforts are ongoing. We will continue to keep staff apprised of new development and their potential impacts.

Activities summary:

• Prepared for and arranged meetings for November 6-8 fly-in by SCVWD staff and Board Director Keegan.

• Continued to monitor and pass on relevant legislation of interest to SCVWD.

• Participated in regular conference call with subsequent follow up assignments.

• Answered specific questions from SCVWD staff.

• Kept staff updated as to legislative changes, committee assignments and confirmations.

• Monitored and shared updates on Administration regarding budget, appropriations, Interior, EPA, transportation, and environmental policies and personnel.

TAX REFORM AND REDUCTION

The House adopted a budget resolution that moves the tax overhaul effort forward with the following issues predominating the debate:

STATE AND LOCAL TAX DEDUCTION

As the House narrowly adopted a budget resolution to kick off a fast-paced debate on overhauling the U.S. tax code, a lingering obstacle re-emerged: whether or how to limit a federal tax break that benefits high-tax states including New York and New Jersey.

President Donald Trump and congressional Republican leaders have proposed abolishing the state and local tax deduction -- a prospect that prompted many GOP lawmakers in those states to vote against the budget. It passed, 216-212. The vote set off a three-week sprint to introduce a bill, consider it in committee and pass it through the chamber before Thanksgiving. But the
protest votes from New York and New Jersey surrounding the so-called SALT deduction reflect the difficult balancing act ahead for House tax writers. Most House Republicans who voted against a budget resolution -- and the fast-tracking of a tax overhaul -- represent New York and New Jersey. Of the 20 Republicans who voted "no," 11 come from two high-tax states where lawmakers are concerned that forthcoming tax legislation could end the federal deduction for state and local taxes. Senate Majority Leader Mitch McConnell (R-Ky.) is considering canceling part of a scheduled Thanksgiving week recess to be in session to work on tax overhaul bill, the Senate's No. 2 Republican John Cornyn (Texas) told reporters. "We've got to get the tax bill out of the Senate by Thanksgiving," Cornyn said. He said the Senate Finance Committee plans to mark up a tax bill one week after the House Ways and Means Committee.

INFRASTRUCTURE OUTLOOK AND EXPECTED REVENUE FROM TAX REFORM

Repatriated revenue from an international tax overhaul is slated to pay for tax cuts, not infrastructure, leaving questions about how the White House will fund its infrastructure proposal, a pair of senior Republican lawmakers said. Revenue from repatriating taxes on overseas corporate earnings was floated as a possible way to fund a $200 billion direct federal investment in infrastructure, as part of President Donald Trump's promised $1 trillion infrastructure package. Rep. Mario Diaz-Balart (R-Fla.), a senior member of the House Budget and Appropriations committees, had hoped income from repatriation could help pay for an infrastructure package, he said. "We may have already lost that battle because it seems that it's all going to tax reform," he said. The battle is lost, Sen. John Thune (R-S.D.), a member of the tax-writing Senate Finance Committee and the fourth-ranking Republican, said. "Repatriation is going to be an offset for tax reform," Thune said. "We need to pay for this stuff and there are other ways of doing it and I'm anxious to hear what those are," Thune said.
MONTHLY REPORT
GOVERNMENTAL ADVOCATES, INC.

October 2017

The legislature is currently in the fall recess. Legislators are either in their district offices or taking trips to learn about innovations in other states or countries to see how California can better perform.

They are expected to return in early January and will be off to the races as this is the second year of the two-year session and the deadlines are tight for the two-year bills that have yet to move out of their house of origin. They will also be up against the legislative counsel deadline for bill proposals and the bill introduction deadline. It will be a busy first couple of months. The Governor will also be releasing his January 10 budget, which will be the last one as he terms out in 2018.

Below is a list of all of the bills that the District is currently watching or has taken an active position on and their status as of the writing of this update.

AB 18 (Garcia), which has support if amended position by the District. This is his park bond that was reintroduced from last year, AB 2444. The bill seeks to allocate $3 billion in parks and water revenues to various projects in the state. It has a counterpart in the Senate, SB 5 by Senator DeLeon. While the bills are not identical, we believe as they move through the process they will either be double-joined or amended to be identical much like what happened with the Wolk and Rendon water bonds in 2014. The District has a support and amend position on the bill to ensure equal access to flood protection funding for statewide projects as well as increased funding for Upper Guadalupe. Currently, AB 18 has been referred to Senate Natural Resources and Senate Governance and Finance Committees. The bill was heard in both committees on August 30, 2017 and was then sent to the Senate Appropriations committee, where Senate Pro-Tem DeLeon held it after they reached an agreement on SB 5.

AB 574 (Quirk), which is a bill that is supported by the District. The bill has been on the consent calendar, but lacks a funding mechanism. This bill would remove certain references to “direct potable reuse,” “indirect potable reuse for groundwater recharge,” and “surface water augmentation,” and would instead specify the four different types of potable reuse projects as “groundwater augmentation,” “reservoir augmentation,” “raw water augmentation,” and “treated drinking water augmentation.” The bill would require the state board, on or before December 31, 2021, to adopt uniform water recycling criteria for potable reuse through raw water augmentation, as specified, and would allow the board to extend this date if certain criteria is met. The bill would permit the state board to adopt the uniform water recycling criteria as emergency regulations, as specified. The bill passed both houses and the Governor signed the bill on October 6, 2017.

AB 791 (Frazier), which is a bill that is opposed by the District. Under current law, the Sacramento-San Joaquin Delta Reform Act of 2009, would prohibit construction of a new Delta conveyance facility from being initiated until the persons or entities that contract to receive water from the State Water Project and the federal Central Valley Project or a joint powers authority representing those entities that have made arrangements or entered into contracts to pay for certain costs required for the construction, operation, and maintenance of the facility and full mitigation of property tax or assessments levied for land used in the construction, location, mitigation, or operation of the facility. This bill would change that by requiring, before a water
contractor enters into a contract to pay for these costs, that the lead agency provide the breakdown of costs for each water contractor entering into a contract and what benefits each contractor will receive based on the proportion it has financed of the proposed conveyance project. The bill was held on the Assembly Appropriations committee suspense file, it is dead for this year.

AB 792 (Frazier), which is a bill that is opposed by the District. The bill is a two-year bill so it will be eligible to be heard in January of 2018. Under current law, the Sacramento-San Joaquin Delta Reform Act of 2009, establishes the Delta Stewardship Council and requires the council to develop, adopt, and commence implementation of a comprehensive management plan for the Delta, known as the Delta Plan. The act requires a state or local public agency that proposes to undertake a covered action to prepare and submit to the council a written certification of consistency with the Delta Plan before undertaking that action. This bill would prohibit the council from granting a certification of consistency with the Delta Plan until the board has completed its update of a specified water quality control program.

AB 851 (Caballero), which is our sponsored bill related to design build. This bill will allow for various water projects to use design build, which is not allowed under current law. We have worked with the trades and construction labor and other stakeholders to ensure that this could be applied statewide while keeping with the spirit of what the Senator Wolk bill, which cleaned up the codes in 2014 in order to harmonize the various piecemeal bills that have passed over the last 15 years related to design build; however the committee chair required us to amend the bill down to 10 special districts ours and 9 others to be named later. The bill has been on consent and will be heard in the Senate Governance and Finance Committee on July 5, 2017. This committee does not allow for design build bills to be on consent. We did work with the Santa Clara County to take an amendment to allow for the extension of Construction Manager at-risk program, which they were extremely appreciative of. We were asked to take an amendment by the City of San Diego, which we agreed to do, especially since the Speaker asked. The amendment did slow the bill down a bit, but we successfully got it off of the Assembly concurrence file and to the Governor on the last day of session early in the evening. The Governor signed the bill on October 15, 2017.

AB 968 (Rubio), which is a bill that is supported by the District. The bill sets up other water conservation measures ensuring that the state make water conservation a way of life, not just during a drought, especially in light of our climate change and the anticipation that having a drought will become normal for us. Specifically, this bill would revise the definitions of “gross water use” and “recycled water” in an effort for California to meet the stated percentages for conservation. The bill would require the Department of Water Resources to reconvene its Urban Stakeholder Committee by April 1, 2018, composed as specified under current law, and would require, by July 1, 2019, the department, in consultation with the committee, to develop certain methodologies. The bill was held in the Assembly Appropriations committee, the bill is dead for this year.

AB 979 (Lackey), which is a bill that is supported by the District. Under the Cortese-Knox-Hertzberg Local Government Reorganization Act of 2000, there is a process for the selection of representatives of independent special districts on each local agency formation commission by an independent special district selection committee pursuant to a nomination and election process. This requires the commission, if it does not have representation from independent special districts on January 1, 2001, to initiate proceedings for representation of those districts upon the commission if requested by independent special districts, and specifies the procedures for those proceedings. This bill would revise the procedures for special district representatives to initiate those proceedings, and would authorize the commission to combine proceedings for
appointing a member representing independent special districts on an oversight board pursuant to those proceedings. The bill was signed by the Governor on September 1, 2017.

AB 1427 (Eggman), which is a bill that is opposed by the District. This bill would revise the declaration to additionally provide that certain uses of stored water while underground constitute beneficial use. The bill would provide that the forfeiture periods of a water right do not apply to water being beneficially used or being held in storage for later beneficial use. The bill is currently on the Assembly Appropriations suspense file where it was held, so the bill is dead for this year. However, there continues to be a working group of interested stakeholders to see if they can come up with a solution for next year.

AB 1654 (Rubio), which is a bill that is supported by the District. This bill creates a new drought response plan by recasting the requirements of a water shortage contingency analysis (WSCA), and creates a new annual water supply reporting requirement for urban water suppliers. The bill will be heard in the Senate Natural Resources Committee in July, the bill was sent back to senate rules committee, the bill is a two-year bill.

AB 1668 (Friedman), which has a support if amended position by the District. This bill and AB 1669 are very similar to what the Administration would like to accomplish in the budget trailer bill. There is some dispute as to whether or not these issues should be handled with budget trailer bill language or as a matter of policy and therefore go through the policy committees. This bill creates a new drought response plan by making numerous changes to water supply planning and drought planning to incorporate climate change, enhance water supply analysis, and strengthen the enforceability of urban water management plans (UWMP) and drought contingency planning. The bill was heard in the Senate Appropriations committee however; the committee re-referred it to Senate Rules committee. The Senate wanted to continue to work members on the floor to see if they could get the necessary votes, however they were unsuccessful. The bill will be held in the Senate Rules committee until they return in January 2018.

AB 1669 (Friedman), which has a support if amended position by the District. (Please see the comments above in AB 1668). This bill requires the State Water Resources Control Board (SWRCB), in consultation with the Department of Water Resources (DWR), to adopt long-term standards for urban water conservation and water use by May 20, 2021. The bill was held in Assembly Appropriations committee suspense file and is dead for this year.

SB 3 (Beall), which is a bill that is supported by the District. This bill would enact the Affordable Housing Bond Act of 2018, which authorizes the sale of $3 billion in general obligation bonds, upon approval by voters at the November 6, 2018 statewide general election. The bill was heard in the Assembly Housing committee, it is part of an overall discussion which will hopefully lead to a package of affordable housing, however those discussions were on-going as we wrapped up the end of the first year of the two-year session, there was a deal reached and the bill made it to the Governor’s desk. He signed the bill on September 29, 2017, along with the rest of the housing package.

SB 5 (DeLeon), which is a bill that has a support if amended position by the District. This was the second of two potential water and parks bonds. The other bill was AB 18 (Garcia), which is listed above, but was held for the year as they agreed that SB 5 would be the vehicle. The two authors and other stakeholders spent many hours talking and were able to meld them into one bill for the 2018 election. The bill successfully moved through the legislative process and the Governor signed it on October 15, 2017.
SB 231 (Hertzberg), which is a bill that is supported by the District. This bill would clarify the term “Sewer” to include storm water for the purpose of the California Constitution to ensure storm water management. This bill has passed both houses and the Governor signed it on October 6, 2017.

SB 492 (Beall), which is a bill that is supported by the District. This bill would authorize the San Jose Water Company (SJWC) to sell lands in the Upper Guadalupe watershed, including the Los Gatos Creek and Saratoga Creek watersheds, to the Midpeninsula Regional Open Space District (MROSD). There will be some challenges with funding should this bill be approved, the Senator has stated that he will work with the state and leverage that with local funding as well to get this property purchased. The bill has passed both houses and was signed by the Governor on September 28, 2017.

SB 519 (Beall) This is another one of our sponsored bills related to cleaning up the District Act. The bill seeks to clarify that when there is a vacancy in one of the seven districts all applicants must be from that district. It also clarifies what the roles and responsibilities are in working with the homeless community to cleanup our waterways ensuring we are in compliance with our permits and are able to maintain our waterways. The bill is parked in the Senate Governance and Finance Committee while we continue to work with staff to ensure the language works to achieve our intended goals.

SB 594 (Beall) This is our permit streamlining bill. We continue to negotiate on language that would work for both the District, the Governor’s office and the affected agencies. The negotiations have been productive and there are many amendments that are needed to ensure we get the best bill possible. The bill is currently sitting in Senate Rules committee, Sacramento staff continues to see if they are able to move the bill in January 2018 or introduce a new bill once they return for the second year of the two-year session. We plan to take the fall to continue to work with stakeholders on language.

SB 606 (Skinner and Hertzberg) The District had a support if amended position on this bill, this is part of a two-bill package. This bill, along with AB 1668, would have provided authority for long-term standards for the efficient use of water, and limit that authority to the 2020-2026 UWMP planning cycles. The bill requires the standard to be a water budget based methodology. The standard is to include specific components on indoor residential water use, outdoor residential water use, outdoor irrigation of landscape areas with dedicated irrigation meters in connection with CII water use, and water loss through leaks. Additionally, the bill establishes an ongoing 10% credit for delivered potable reuse of water. Both bills were amended very late in the session and much like AB 1668, SB 606 held on the Assembly floor due to the lack of support from legislators. We anticipate both bills will move next year.

CONCLUSION

With the fall recess upon us and the Governor’s actions final, we now look ahead to 2018 and potential bill proposals as well as budget requests that we may seek on behalf of the District. The Board has approved the guiding principles for the state legislative package, now we will work with the District’s lawyers and key staff to ensure the bills are drafted appropriately and will get them into the Legislative Counsel and begin to meet with our delegation to identify potential authors. As always, please let me know if you have any questions.
TO: Board of Directors

SUBJECT: Report - Economic Evaluation of the Open Space Credit (BMR-17-0035)

FROM: Michele King, COB

DATE: December 11, 2017

As requested at the November 28, 2017 Board meeting, attached is a copy of the August 15, 2013 Report, "Economic Evaluation of Open Space Credit."
Economic Evaluation of the Open Space Credit

Prepared for
Santa Clara Valley Water District
5750 Almaden Expressway
San Jose, CA 95118

August 15, 2013

Prepared by
Duncan MacEwan, Ph.D.
Richard Howitt, Ph.D.
Executive Summary

Santa Clara Valley Water District (the District) contracted with ERA Economics to provide an independent and quantitative analysis of the Open Space Credit and changes to the agricultural groundwater charge in Santa Clara County. The study consists of three parts: (i) an analysis of the value of agricultural open space, (ii) an analysis of important ecosystem service values provided by agriculture, and (iii) an economic analysis of the direct costs to growers resulting from changes in the agricultural groundwater charge. The information and findings in this report can be used by the District staff, Board of Directors, stakeholders and the community to make informed decisions concerning changes to the Open Space Credit.

Since 1980 harvested agricultural acreage in Santa Clara County has decreased from a peak of 44,000 acres in 1987 to 18,500 acres in 2011. The decline in Santa Clara County agriculture has been driven by a number of factors including increased competition and market-driven production shifts to other regions. Despite the decline in total acreage, increased productivity and real crop prices over the same time period have kept gross crop revenues constant in real terms. Average gross crop revenue per acre has increased from a low of $2,100 per acre in 1990 to $4,500 per acre in 2011 in real terms.

The study finds that agriculture provides positive value as open space and from most ecosystem services. Increasing the agricultural groundwater charge would impose direct costs to growers but most of these costs are a result of higher water rates, not from land falling. The study finds that increasing the agricultural groundwater charge to 10 percent of municipal and industrial (M&I) rates will result in less than 1 percent decrease in total harvested acres in Santa Clara County.

Agricultural open space provides value to the community. The analysis of the value of agricultural open space involved a literature review and meta-analysis of relevant studies conducted in other regions. Agricultural open space is not traded in a market so its value is inferred by statistical analysis of nearby home values. Key findings include:

- Cropland open space increases home values within 0.25 mile by 2.2 percent, on average.
- Rangeland, native vegetation and conservation easement open spaces increase home values within 0.25 mile by 2.56 percent, on average.
- Intensive agriculture such as mushroom farms and livestock operations decrease home values within 0.33 mile by 6.4 percent, on average.

Agriculture provides services to the ecosystem which provide value to the county and District. The analysis of the value of ecosystem services provided by agriculture involved a literature review and meta-analysis of relevant studies conducted in other regions. There are many types of ecosystem services and most are not traded in markets. The analysis included the seven following ecosystem services commonly associated with agriculture: flood control, groundwater recharge, water quality, pollination, habitat, biodiversity and nitrogen regulation. Key findings based on a meta-analysis include:

- The value of flood control provided by agriculture is estimated at between $42 and $86 per acre. This figure is likely to be higher in Santa Clara County where flood events have a higher cost than the areas evaluated in the reference studies.
- The value of groundwater recharge provided by agriculture is estimated at between $135.30 and $167.28 per acre based on a soil-water balance developed for Santa Clara County.

The analysis of the direct costs to growers from changes in the agricultural groundwater charge involved comprehensive data collection and the development of an economic model of agricultural production in Santa Clara County. The model was used to estimate the responses of growers to incremental changes in the
agricultural groundwater charge, and the corresponding effect on crop mix, land falling, and profits. Two scenarios were evaluated relative to baseline conditions: agricultural groundwater charge increasing to 10 percent or 25 percent of M&I rates over a 10 year phase-in period from fiscal years 2015 to 2024. The incremental cost is the annual cost in each year of phase-in and the present value of the total cost is the sum of the incremental costs in current dollars. Key findings include:

- When the agricultural groundwater charge increases to 10 percent of M&I rates over 10 years the incremental cost per year increases from $26,800 in FY 2015 to $465,000 in FY 2024. The present value of the total cost to growers is estimated to be $6.96 million. Total harvested area declines by 17 acres, less than 1 percent.

- When the agricultural groundwater charge increases to 25 percent of M&I rates over 10 years the incremental cost per year increases from $80,800 in FY 2015 to $2.51 million in FY 2024. The present value of the total cost to growers is estimated to be $35.91 million. Total harvested area declines by 549 acres, less than 3 percent.
Contents

Executive Summary ... 2
Contents ... 4
List of Figures .. 6
List of Tables .. 6

1. Introduction .. 8
 1.1 Structure of the Report ... 8

2. Problem Statement .. 9

3. Overview of the Approach .. 10

4. Santa Clara County .. 11
 4.1 Agricultural Production .. 11
 4.2 Agricultural Employment .. 13
 4.3 Agricultural Revenues .. 14

5. The Value of Agricultural Open Space 16
 5.1 The Value of Open Space in Santa Clara County 17
 5.1.1 Results .. 17
 5.1.2 Example Application .. 18

6. The Value of Ecosystem Services ... 20
 6.1 Meta-analysis of the Value of Ecosystem Services in Santa Clara County .. 20
 6.1.1 Results .. 21

7. Analysis of the Agricultural Groundwater Charge 23
 7.1 Groundwater Charge Scenarios 23
 7.2 Santa Clara County Agricultural Production Model 23
 7.3 Groundwater Costs as a Percent of Variable Costs 24
 7.4 Direct Costs to Growers ... 25
 7.4.1 Agricultural Groundwater Charges at 10 Percent of M&I Rates .. 26
 7.4.2 Agricultural Groundwater Charges at 25 Percent of M&I Rates .. 26
 7.5 Changes in Irrigated Acres .. 27
 7.6 Costs to the County Economy 28

8. Summary of Findings .. 29

Technical Appendix A: Value of Open Space 30
 A.1 The Value of Open Space in Santa Clara County 30
 A.1.1 An Overview of the Value of Open Space 31
 A.1.2 Positive and Negative Amenities 32
 A.2 Meta-Analysis of the Value of Open Space 33
 A.2.1 Summary of Results .. 34
 A.2.2 Example Application 35
 A.3 Conclusion ... 36
 A.4 Relevant Studies Reviewed .. 36

Technical Appendix B: Ecosystem Service Value 37
 B.1 Ecosystem Services ... 37
B.1.1. Methods for Estimating the Value of Ecosystem Services .. 38
B.2. Ecosystem Services Related to Agriculture .. 39
B.3. Meta-Analysis of Ecosystem Service Value .. 39
 B.3.1. Summary of Meta-Analysis Results ... 40
B.4. Santa Clara County Framework .. 42
 B.4.1. Flood Control .. 42
 B.4.2. Groundwater Recharge ... 42
 B.4.3. Summary ... 44
B.5. Conclusion ... 44
B.6. Relevant Studies Reviewed ... 45

Technical Appendix C: Model Documentation .. 47
C.1. Problem Overview .. 47
C.2. Santa Clara County Agricultural Model Objectives .. 47
C.3. Santa Clara County Model Overview .. 48
 C.3.1. Model Calibration ... 49
 C.3.2. Model Validation ... 50
C.4. Santa Clara County Model Components .. 50
 C.4.1. Crops ... 50
 C.4.2. Geographic Regions .. 51
 C.4.3. Land Use Data .. 52
 C.4.4. Acreage Response Elasticities .. 53
 C.4.5. Crop Prices and Yields ... 53
 C.4.6. Other Input Costs ... 54
 C.4.7. Water Use, Availability and Costs .. 54
C.5. Using the Model .. 54
 C.5.1. Data Input File ... 55
 C.5.2. Model Program File ... 55
 C.5.3. Solver Options File .. 55
 C.5.4. Output File .. 55
C.6. Relevant Studies Reviewed ... 55
List of Figures

Figure 1. Total Harvested Acres in Santa Clara County, 1980 – 2011 ... 12
Figure 2. Total Farm Jobs in Santa Clara County, 1990 - 2011 .. 13
Figure 3. Gross Agricultural Crop Revenue in Santa Clara County, 1980 - 2011 (2012 Dollars) 14
Figure 4. Gross Agricultural Crop Revenue per acre in Santa Clara County, 1980 - 2011 (2012 Dollars) ... 15
Figure 5. Farm Monitoring and Mapping Program (FMMP) Aggregate Land Use, 2010, and Agriculture-Urban Interface... 16
Figure A1. Farm Monitoring and Mapping Program (FMMP) Aggregate Land Use, 2010, and Agriculture-Urban Interface ... 31
Figure C1. Santa Clara County Model Regions ... 52

List of Tables

Table 1. Farm Mapping and Monitoring Program 2010 Reported Santa Clara County Land Use 11
Table 2. Harvested Acres in Santa Clara County, 2001 - 2011 .. 12
Table 3. Summary of Open Space Value .. 18
Table 4. Value of Open Space Example .. 18
Table 5. Meta-Analysis of the Total Value of Ecosystem Services Provided by Agriculture 22
Table 6. Groundwater Recharge Ecosystem Service Value in Santa Clara County .. 22
Table 7. Agricultural Groundwater Charge ($/af) by Fiscal Year ... 23
Table 8. Santa Clara County Model Crop Acreage, 2010-2011 Average ... 24
Table 9. Agricultural Groundwater Charge as a Percent of Variable Production Costs, Weighted Average by Fiscal Year .. 25
Table 10. Total Groundwater Cost as a Percent of Variable Production Costs, Weighted Average by Fiscal Year. 25
Table 11. Direct Cost to Growers, by Fiscal Year (dollars in thousands) for 10 percent of M&I 26
Table 12. Direct Cost to Growers, by Fiscal Year (dollars in thousands) for 25 percent of M&I 27
Table 13. Fallow Acres due to Increased Groundwater Charge .. 27
Table A1. Summary of Open Space Value .. 35
Table A2. Value of Open Space Example .. 35
Table B1. Meta-Analysis of the Total Value of Ecosystem Services Provided by Agriculture 41
Table B2. Land and Water Use Summary Data... 43
Table B3. 1990-2003 Average Monthly Rainfall at Gilroy, California (inches) ... 43
Table B4. Groundwater Recharge Ecosystem Service Value in Santa Clara County 44
Table C1. Santa Clara County Model Crop Groups .. 51
Table C2. Santa Clara County Model Crop Acreage, 2010-2011 Average .. 53
1. Introduction

Santa Clara Valley Water District (the District) contracted with ERA Economics to provide an independent and quantitative analysis of the Open Space Credit and changes to the agricultural groundwater charge in Santa Clara County. The Open Space Credit exists to encourage agricultural lands in Santa Clara County.

Increasing the agricultural groundwater charge would decrease the Open Space Credit and potentially allow the District to fund other activities. This study estimates the value of agriculture and the economic costs of increasing the agricultural groundwater charge in order to inform future policy discussion. The study does not include a benefit-cost analysis for Open Space Credit funding. To inform future discussion, the study consists of three parts: (i) an analysis of the value of agricultural open space, (ii) an analysis of important ecosystem service values provided by agriculture, and (iii) an economic analysis of the direct costs to growers resulting from changes in the agricultural groundwater charge.

Santa Clara County has experienced a shift in land use from agriculture to urban development, primarily in North County. Since 1980 harvested agricultural acreage in Santa Clara County has decreased from a peak of 44,000 acres in 1987 to 18,500 acres in 2011. The decline in Santa Clara County agriculture has been driven by a number of factors including increased competition and market-driven production shifts to other regions. Despite a decline in total acreage, increased productivity and real crop prices over the same time period have kept gross crop revenues constant in real terms. Gross crop revenue per acre has increased from a low of $2,100 per acre in 1990 to $4,500 per acre in 2011 in real terms. Santa Clara County acreage has been contracting for some time but the gross value per acre has been steadily increasing.

To estimate the economic impacts of changes in the agricultural groundwater charge this study holds all other factors constant. Possible costs to agriculture such as increasing electricity rates and labor costs are not considered in the analysis. Possible benefits to agriculture such as increasing real crop prices and productivity are also not considered in the analysis. This is necessary in order to isolate the effects of increases in the agricultural groundwater charge on the agricultural community.

The information and findings in this report can be used by the District staff, Board of Directors, stakeholders and the community to make informed decisions concerning changes to the Open Space Credit.

1.1 Structure of the Report

The main text of this report provides a summary and overview of the economic evaluation of the Open Space Credit. The interested reader can find details and further documentation in three supporting technical appendices. The main text and each of the appendices can each be read as stand-alone documents.

Section 2 provides the problem statement and section 3 provides an overview of the quantitative approach. Section 4 summarizes important agricultural statistics for Santa Clara County and includes a discussion of important trends underlying the historical decline in crop acreage. Section 4 additionally includes summary statistics for the value of agricultural production in Santa Clara County. Sections 5 and 6 summarize the value of agriculture beyond direct crop production, including the value of open space and the value of ecosystem services provided by agriculture. Section 7 summarizes the economic impact analysis of increases in the agricultural groundwater charge. Technical appendices A, B and C provide additional detail and references for sections 5, 6 and 7, respectively.
2. Problem Statement

The Open Space Credit takes the form of a subsidy to agricultural groundwater users such that currently agricultural producers pay 3 and 6 percent of the municipal and industrial (M&I) rate in North County and South County, respectively. Section 26.7(a)(3)(D) of the District Act limits the agricultural groundwater charge to an amount no greater than 25 percent of the M&I groundwater charge. Resolution 99-21 sets the agricultural groundwater charge at no more than 10 percent of M&I rates. The Open Space Credit is funded by non-rate related revenues from ad valorem property taxes in the General, Water Utility, and Watershed Stream Stewardship Funds. Increasing the agricultural groundwater charge would decrease the Open Space Credit and potentially allow for the reallocation of property tax revenues to fund other District activities. However, higher agricultural groundwater charges may affect the viability of the agricultural economy in Santa Clara County and, in turn, the preservation of open space for which the Open Space Credit was first established. The District commissioned this study in order to better understand short and long-term impacts of higher agricultural groundwater charges.

The District has requested a study that provides an assessment of the value of agriculture and the economic impacts of changes to the agricultural groundwater charge. The study includes an estimate of the value of agriculture as open space and for ecosystem services. The economic impact analysis includes two alternative scenarios where agricultural groundwater charges are increased to either 10 percent or 25 percent of M&I water rates by fiscal year 2024. The scenarios include a 10 year phase-in period starting in fiscal year 2015. Economic impacts are estimated relative to baseline agricultural groundwater charges projected by the District over the same 10 year period.

This study provides a basis for understanding the value of agricultural land in terms of open space and ecosystem services, and the direct costs to growers from changing the agricultural groundwater charge. This study does not estimate the total economic costs to the Santa Clara County economy from changes in the agricultural groundwater charge. The study does not provide benefit-cost analysis of shifting property tax revenues from the Open Space Credit to other district activities. However the results of this analysis represent the starting point for county-wide impact and benefit-cost analyses.
3. Overview of the Approach

The first part of the study estimates the value of agricultural open space and the value of ecosystem services. Open space and ecosystem service values for Santa Clara County agriculture are established from a literature review of studies conducted in different regions with results that are applicable to Santa Clara County. A set of selection criteria were applied to identify a subset of relevant studies and a smaller subset of these studies were selected to include in a meta-analysis to estimate the values in Santa Clara County.

The second part of the study estimates the direct cost to growers, and underlying changes in the crop mix and total irrigated acreage, from to higher agricultural groundwater charges. Given that the agricultural groundwater charges considered in this analysis are in the range of 1–5\(^1\) percent of variable production costs, on average, an accounting approach based on average crop budgets would not reflect the subtle changes in costs and acreages implied by relatively small changes in the agricultural groundwater charge. An economic model of agricultural production in Santa Clara County was constructed for the study. This involved data collection on the different types of crops, the groundwater basins in which they were grown, and the revenues and costs associated with producing each crop. In addition, the relative responsiveness of farmers to changes in costs for different crops was based on a previous statistical analysis over a period of 30 years. The technical term for the responsiveness of crop acres to changes in profitability is the price elasticity of supply. When combined with the data for the Santa Clara County agricultural sector and calibrated against a particular average year, in this case 2010-2011, the resulting economic model can forecast how growers production decisions would change in particular regions, and the effect on farm profitability.

The method used in this study is a standard economic approach used by state and federal agencies including the United States Army Corps of Engineers, United States Bureau of Reclamation, and California Department of Water Resources for project impact evaluations. The model is a flexible framework that could be expanded to measure the effects of the changes in irrigated agriculture on both ecosystem service benefits and open-space benefits. It could also be used to evaluate changes in prices, other input costs, or other policies.

All other factors that may affect future conditions in the agricultural industry are held constant in order to isolate the effect of changes in the agricultural groundwater charge. This is a standard approach for economic analysis. A number of other factors are likely to affect Santa Clara County agriculture in the future but these factors are external to changes in the agricultural groundwater charge. Increased labor and energy costs are likely to be offset by increased agricultural productivity and higher commodity prices. All of these factors are held constant in the analysis.

\(^1\) A weighted average across all crops in Santa Clara County shows that the agricultural groundwater charge plus pumping costs is less than 8 percent of average variable costs under all policies considered in this report. This proportion varies by crop and Section 7.3 provides a more detailed discussion and overview.
4. Santa Clara County

This section provides a summary of Santa Clara County land use, agriculture and historical trends driving land use change. The total area of agriculture in Santa Clara County has been on the decline since the 1980's. Increases in productivity and real crop prices have helped keep gross crop revenues constant in real terms and gross revenue per acre has been increasing in recent years.

According to the United States Census Bureau, as of 2011 1.8 million residents call Santa Clara County home. Primary cities at the agriculture-urban interface include Morgan Hill, San Martin, and Gilroy, with populations of 37,882, 7,027, and 48,821, respectively. These cities are immediately surrounded by productive farmland and include average residential home prices above the state average. According to California's Farmland Mapping and Monitoring Program (FMMP), of the 835,000 total acres in the county, 189,000 (23%) are currently developed. Of the remaining acreage, 3% is in productive agriculture, 47% is in range and grazing lands, and the remaining 27% consists of bodies of water and vegetation. Table 1 summarizes land use in Santa Clara County.

Table 1. Farm Mapping and Monitoring Program 2010 Reported Santa Clara County Land Use

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Acres</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed</td>
<td>189,130</td>
<td>22.64</td>
</tr>
<tr>
<td>Agriculture – Grazing</td>
<td>392,776</td>
<td>47.03</td>
</tr>
<tr>
<td>Agriculture – Local</td>
<td>4,327</td>
<td>0.52</td>
</tr>
<tr>
<td>Agriculture – Prime</td>
<td>17,271</td>
<td>2.07</td>
</tr>
<tr>
<td>Agriculture – State</td>
<td>3,630</td>
<td>0.43</td>
</tr>
<tr>
<td>Agriculture – Unique</td>
<td>2,524</td>
<td>0.30</td>
</tr>
<tr>
<td>Water Bodies</td>
<td>8,458</td>
<td>1.01</td>
</tr>
<tr>
<td>Miscellaneous Other</td>
<td>217,109</td>
<td>25.99</td>
</tr>
<tr>
<td>Total</td>
<td>835,225</td>
<td></td>
</tr>
</tbody>
</table>

4.1 Agricultural Production

The 2011 Santa Clara County Agricultural Crop Report estimates an annual gross value of agricultural production of over $247 million on less than 20,000 harvested acres and an additional 210,000 acres of non-irrigated rangeland. The recently released 2012 Crop Report shows that the gross value increased an additional 5 percent, to just over $260 million. The 2011 gross value of agricultural production includes $86 million from nursery crops and $61 million from mushroom farms. Harvested acreage includes irrigated crops and dry farmed grain hay. Table 2 summarizes County Agricultural Commissioner harvested acreage data by aggregate crop groups starting in 2001. Harvested acres exhibited a slight downward trend over the last 10 years, decreasing from a high of 23 thousand acres in 2003 down to 18.4 thousand acres in 2011.
Table 2. Harvested Acres in Santa Clara County, 2001 - 2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Fruit and Nuts</th>
<th>Field Crops</th>
<th>Onions and Garlic</th>
<th>Vegetables</th>
<th>Processing Tomatoes</th>
<th>Grapes</th>
<th>Dryland Grain Hay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1,847</td>
<td>1,687</td>
<td>590</td>
<td>9,968</td>
<td>525</td>
<td>1,750</td>
<td>4,200</td>
<td>20,567</td>
</tr>
<tr>
<td>2002</td>
<td>1,889</td>
<td>2,001</td>
<td>568</td>
<td>10,289</td>
<td>623</td>
<td>1,839</td>
<td>3,642</td>
<td>20,851</td>
</tr>
<tr>
<td>2003</td>
<td>1,939</td>
<td>2,176</td>
<td>774</td>
<td>12,726</td>
<td>497</td>
<td>1,854</td>
<td>3,042</td>
<td>23,008</td>
</tr>
<tr>
<td>2004</td>
<td>1,674</td>
<td>1,804</td>
<td>691</td>
<td>12,469</td>
<td>169</td>
<td>1,870</td>
<td>2,961</td>
<td>21,638</td>
</tr>
<tr>
<td>2005</td>
<td>1,806</td>
<td>2,111</td>
<td>596</td>
<td>12,126</td>
<td>0</td>
<td>1,720</td>
<td>3,163</td>
<td>21,522</td>
</tr>
<tr>
<td>2006</td>
<td>1,847</td>
<td>1,903</td>
<td>563</td>
<td>13,160</td>
<td>0</td>
<td>1,750</td>
<td>2,717</td>
<td>21,940</td>
</tr>
<tr>
<td>2007</td>
<td>1,862</td>
<td>2,055</td>
<td>623</td>
<td>10,084</td>
<td>0</td>
<td>1,550</td>
<td>3,402</td>
<td>19,576</td>
</tr>
<tr>
<td>2008</td>
<td>1,803</td>
<td>2,025</td>
<td>651</td>
<td>9,605</td>
<td>0</td>
<td>1,510</td>
<td>4,143</td>
<td>19,737</td>
</tr>
<tr>
<td>2009</td>
<td>1,625</td>
<td>1,476</td>
<td>795</td>
<td>10,482</td>
<td>1,160</td>
<td>1,516</td>
<td>4,530</td>
<td>21,584</td>
</tr>
<tr>
<td>2010</td>
<td>1,301</td>
<td>1,082</td>
<td>556</td>
<td>10,008</td>
<td>1,010</td>
<td>1,530</td>
<td>3,790</td>
<td>19,277</td>
</tr>
<tr>
<td>2011</td>
<td>1,197</td>
<td>1,339</td>
<td>520</td>
<td>9,248</td>
<td>1,060</td>
<td>1,550</td>
<td>3,510</td>
<td>18,424</td>
</tr>
</tbody>
</table>

Source: Santa Clara County Agricultural Commissioner Annual Crop Reports, 2001 - 2011
Note: Excludes approximately 210,000 acres of non-irrigated rangeland

Figure 1 illustrates the trend for total harvested acres in Santa Clara County. Total acreage has decreased since 1980. Average harvested acres equaled 40,367 per year between 1980 and 1989 and fell to an average of 33,168 and 21,158 in the decades 1990–1999 and 2000–2009, respectively. Given the current difference in the density of cropping across the county, it is clear that the majority of the reduction in acreage took place in North County, where the pressure to convert farmland to commercial, industrial and residential use was the strongest. In addition, traditional crops in North County included soft fruits, which declined in greater proportions than the total harvested acres.

Figure 1. Total Harvested Acres in Santa Clara County, 1980 – 2011
There are a number of trends underlying the changes in total harvested acres. The area planted to grapes has remained fairly stable since 1980, however, like many areas in the Central Valley there has been a conversion in the type of grapes produced from table grapes to wine grapes. This change has coincided with the 1989 designation of Santa Clara Valley as an American Viticultural Area. Garlic acreage has declined by more than 50 percent, a change that is largely attributed to international competition from China. Recent years have seen a steady increase in fresh vegetables, such as bell peppers, in response to strong fresh vegetable demand.

The 2011 gross value of agricultural production ($247 million) includes 26 different commodities with over $1 million in value. Nursery crops accounted for the largest share of gross value ($86 million), which includes miscellaneous bedding plants, roses and shrubs, and turf. Mushrooms are the second most valuable commodity in the county with gross value of $61 million in 2011. Mushroom farms in Santa Clara County include Monterey Mushrooms, South Valley Mushrooms, Royal Oaks Mushrooms, B&D Mushrooms, San Martin Mushrooms, Countryside Mushrooms, and Global Mushrooms. Other top-grossing commodities include bell peppers, fresh tomatoes, lettuce, and miscellaneous greens. For the last decade nursery crops, mushroom farms, and bell peppers have been top grossing commodities in Santa Clara County.

4.2 Agricultural Employment

The California Employment Development Department (EDD) classifies Santa Clara County as part of the San Jose–Sunnyvale–Santa Clara Metropolitan Statistical Area (MSA). EDD shows total farm employment in Santa Clara County in 2011 equaled 3,400 Full Time Equivalent (FTE) jobs in the MSA according to the North American Industry Classification System (NAICS) code(s) 11-000000, total farm jobs. Farm employment has decreased in the MSA since 2008, and the 20 year average is 4,440 FTE farm jobs in Santa Clara County. Farm employment generally mirrors trends in harvested acreage. Figure 2 illustrates total farm jobs in Santa Clara County from 1990 to 2011.

Figure 2. Total Farm Jobs in Santa Clara County, 1990 - 2011
The NAICS data shown in figure 2 do not include indirect and induced jobs supported by the agricultural sector. Indirect jobs include industries that support agriculture such as farm machinery, agricultural chemicals, and fertilizers. Induced jobs are those created by money spent by workers in other industries. For example, a grower employs laborers (direct jobs) and purchases drip tape from a supply store in Gilroy that hires workers (indirect jobs) to support the growers purchases. The farm laborer spends money at local restaurants that hire employees to cook and serve food (indirect jobs). Total agricultural employment, including all supporting and supported industries, is higher than that shown in figure 2. Estimation of direct, indirect and induced jobs would require additional analysis with an input-output model of Santa Clara County. Input-output models quantify the relationship between various sectors of the economy and are able to estimate changes in all related industries due to a change in the agricultural sector.

4.3 Agricultural Revenues

The footprint of the agricultural industry in Santa Clara County has been on the decline for a number of years, which can be seen in the declining acreage and employment figures. At the same time the industry has benefited from increased yields through improved efficiency and production practices. International and domestic demand has simultaneously driven strong agricultural prices and land values in recent years.

Figure 3 illustrates gross crop revenue in Santa Clara County since 1980, in constant 2012 dollars. Crop revenue excludes apiary products, livestock, mushroom farms, nurseries, and rangeland. Crop production represents the largest agricultural groundwater user in the county and will be most affected by changes in the agricultural groundwater charge. Figure 3 shows that gross agricultural crop revenue has remained constant in real terms since 1980. This is driven by increases in productivity (yields) and increases in real prices.

Figure 3. Gross Agricultural Crop Revenue in Santa Clara County, 1980 - 2011 (2012 Dollars)

Figure 4 illustrates gross crop revenue per acre from 1980 to 2011, in constant 2012 dollars. Increases in productivity (yields) and real prices and a shift towards higher value more intensive production has led to an increase in gross crop revenues per acre. Although acreage and jobs have declined, the agricultural industry in Santa Clara County currently produces a higher value per unit land than previous years.
Figure 4. Gross Agricultural Crop Revenue per acre in Santa Clara County, 1980 - 2011 (2012 Dollars)
5. The Value of Agricultural Open Space

This section provides an overview of the methods used to estimate the value of different types of agricultural open space in Santa Clara County. The section includes a summary of the estimated value in Santa Clara County and an example application for how to value particular areas of open space. Technical details, references and the logic behind the analysis can be found in technical appendix A.

Open agricultural space provides a range of amenities to communities beyond the direct value of the crops produced and the revenues generated. Many such amenities are positive, such as aesthetic value and scenery for nearby residents, recreation opportunities and prevention of traffic and urban sprawl. Measuring the value of open agricultural land is particularly relevant to Santa Clara County, where fragmented high-tech and residential development is interspersed with high value agriculture. This pattern of development has resulted in a larger agriculture-urban interface (edge) in Santa Clara County than in most urban environments. Figure 5 illustrates land use and the agriculture-urban interface in 2010. The agriculture-urban interface is calculated by applying a 0.25 mile radius to all types of agricultural land reported by the FMMP. Urban development within this radius represents the agriculture-urban interface and is shown in yellow.

Figure 5. Farm Monitoring and Mapping Program (FMMP) Aggregate Land Use, 2010, and Agriculture-Urban Interface
Figure 5 illustrates the concentration of the agriculture-urban edge in South County. This is consistent with the knowledge that as North County has become more developed, agriculture and open space are pushed farther south.

5.1 The Value of Open Space in Santa Clara County

Analysis of Santa Clara County data and review of existing economic studies shows there are three key types of agricultural open space: (i) cropland, (ii) rangeland, and (iii) intensive agriculture. Cropland is land that is actively farmed. Rangeland includes non-irrigated and non-seeded grazing land, native vegetation, and forests. Intensive agriculture includes dairies, mushroom farms, and related production processes that likely generate negative amenities such as noise and odors. These three types of open space were found to provide different economic value and consequently were treated separately in the analysis.

Economists consider open space a non-market good because it has value, but no market where it is traded. Economists have studied the value of open space in different regions using a range of approaches. Over 30 studies were reviewed and 12 studies were identified as relevant for California open space valuation and, in particular, applicable to areas such as Santa Clara County. After careful review and analysis 3 studies were selected to value Santa Clara County open space in cropland, rangeland, and intensive agriculture. Three criteria were used to identify applicable studies:

- The study applied best economic principles, statistical and econometric analysis.
- The study estimated the value of relevant types of agricultural open space.
- The study used data from a region similar to Santa Clara County.

Since agricultural open space is not explicitly traded in a market valuation relies on statistical analysis of nearby home prices. This method relies on econometric (statistical) analysis to decompose the price of a home into the value of its individual attributes. For example, proximity to transportation, quality of the school district, house size, neighborhood characteristics, and a number of other factors can affect the sale price of a home, in addition to proximity to open space. The analysis must control for all other factors that affect the price of a home in order to identify the incremental value attributable to specific types of agricultural open space.

5.1.1. Results

Three types of agricultural open space in Santa Clara County were included in the analysis. To the extent that some homes are located near several land use types, the net effect is a weighted average of the individual estimates provided below. Valuation of all open space in the county would require collecting a comprehensive dataset of all agricultural and urban lands in a geospatial database. Specifically, it would be necessary to know the location of every urban parcel relative to cropland, rangeland, or intensive agriculture.

Analysis of the literature shows that a 0.25 mile proximity to cropland open space increases home values by 2.2% on average. Proximity to forests, rangeland, and native vegetation increases home values further, by 2.56% on average. Some types of open space provides negative value. Proximity within 0.33 mile of intensive agriculture decreases home values by 6.4% on average. Table 3 summarizes the key findings of the analysis.
Table 3. Summary of Open Space Value

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Percent change in nearby home values for 1 parcel converted to open space</th>
<th>Radius (mi)</th>
<th>Study</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>2.20</td>
<td>0.25</td>
<td>Kuminoff (2009)</td>
<td>CA</td>
</tr>
<tr>
<td>Forests, rangeland</td>
<td>2.56</td>
<td>0.25</td>
<td>Ready and Abdalla (2005)</td>
<td>MD</td>
</tr>
<tr>
<td>Intensive agriculture</td>
<td>-6.40</td>
<td>0.3</td>
<td>Irwin (2002)</td>
<td>PA</td>
</tr>
</tbody>
</table>

5.1.2. Example Application

Consider conversion of 1 parcel from existing urban use to agricultural open space within 0.25 mile of an average home in the cities of Morgan Hill, San Martin and Gilroy. Table 4 summarizes the average change in home value in each location for three open space types. Column 2 lists the average home sale price as of May 2013 in each location. Average home sale prices are compiled from the Zillow Home Value Database and represent an average sale price for all homes sold between January and May 2013. Column 3 shows the change in the average home value if 1 parcel of urban development is converted to crop production. On average, home values increase by 2.2 percent, reflecting the implicit value of open space to the region. For example, in Gilroy this would increase the average value of homes located within 0.25 mile by $9,875. If the parcel was instead converted to rangeland the value would be $11,491. The average home value would decrease if the urban parcel was instead converted to intensive agriculture such as a mushroom farm. These changes in home values hold all other factors constant and consequently represent the implicit value of agricultural open space.

The net value will depend on the quantity and location of different agricultural open space. For example, if a single parcel located within 0.25 mile of an average home in Gilroy was converted from urban development to cropland and another parcel to intensive agriculture, home values near both parcels would decrease in value by 4.2 percent (2.2 - 6.4 percent), on average. The value of open space in this case is -$18,825 ($448,875 x 4.2%).

Table 4. Value of Open Space Example

<table>
<thead>
<tr>
<th>City</th>
<th>Average Home Price¹</th>
<th>Change in home value due to conversion of 1 acre to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cropland</td>
</tr>
<tr>
<td>Morgan Hill</td>
<td>$581,250</td>
<td>$12,788</td>
</tr>
<tr>
<td>San Martin</td>
<td>$678,775</td>
<td>$14,933</td>
</tr>
<tr>
<td>Gilroy</td>
<td>$448,875</td>
<td>$9,875</td>
</tr>
<tr>
<td>Santa Clara County²</td>
<td>$683,025</td>
<td>$15,027</td>
</tr>
</tbody>
</table>

¹ Source: January 2013 - May 2013 average, computed from Zillow Home Value Database
² County average.

The analysis shows that there are positive effects on home values located in close proximity to agricultural open space. On average, home values increase by 2.2 - 2.56 percent when located close (within 0.25 mile) to cropland or rangeland. There are a few types of agriculture which could have negative effects from odors, noise, and other factors. In Santa Clara County these include mushroom farms and small-scale livestock operations. Proximity (within 0.33 mile) to intensive agriculture such as mushroom farms decreases home values by 6.4 percent on average as a result of negative amenities. Given the checkerboard development pattern in Santa
Clara County and the limited amount of intensive agriculture open agricultural space contributes positive value to Santa Clara County.
6. The Value of Ecosystem Services

This section provides an overview of the methods used to estimate the value of ecosystem services provided by agriculture in Santa Clara County. Technical details, references and the logic behind the analysis can be found in technical appendix B.

Ecosystem services can be broadly defined as the amenities provided by resources and natural systems. Services include maintenance of soil quality, species habitat, clean drinking water, and a general existence value through support provided to a larger ecosystem network. Ecologists have identified over one hundred ecosystem services that can be associated with agriculture and open space. Most services are location-specific such as habitat and water quality. Seven common ecosystem services provided by agriculture are considered and specific attention is paid to flood control and groundwater recharge since these are two components of the District’s mission.

6.1 Meta-analysis of the Value of Ecosystem Services in Santa Clara County

Similar to open space, many ecosystem services are non-market goods in that they are not actively traded in a market with an observable price. Ecosystem services are additionally difficult to value because the appropriate geographic scale for analysis varies widely; some services are local in nature, such as pollination, while others are global, such as carbon sequestration. Even after defining the relevant geographic scale, values depend on the location of the field (proximity to important species) and field-specific management practices (organic versus conventional agriculture). In light of these challenges, applied policy research and the academic literature continue to develop new methods to value ecosystem services.

The meta-analysis focused specifically on the groundwater recharge and flood control benefits provided by irrigated agriculture and dry farmed grain hay. Five additional services commonly associated with agricultural production were identified. Ecosystem service values provided by agriculture in Santa Clara County reviewed for this analysis include flood control, groundwater recharge, water quality, pollination, habitat, biodiversity and nitrogen regulation.

Flood control. Agriculture can provide a natural buffer for variation in seasonal water flows and rainfall. Land management practices upstream and downstream affect runoff, drainage and the frequency of flood events. In some areas agriculture can be managed for both crop production and as a seasonal floodplain. Agriculture typically has a lower cost for a given level of flood risk than residential and commercial development.

Groundwater recharge. Deep percolation from irrigation and precipitation will result from some portion of applied water in excess of consumptive use. This proportion depends on field soil characteristics, slope, crop type and irrigation practices.

Water quality. Surface runoff and deep percolation of water from irrigation and precipitation on agricultural land can increase or decrease water quality. Excessive nitrogen application can lead to significantly decreased water quality. Less intensive agriculture such as rangeland can provide a natural filter for water.

Pollination. Wild pollinator populations have recently been on steady decline in California. Agriculture provides natural habitat for pollinators.

Habitat. Conversion from native vegetation to agriculture can destroy habitat for some species. However species such as the Swainson’s Hawk and other predatory birds benefit from hunting conditions on open fields.
Biodiversity. A diverse crop mix and rotation system functions as a natural break for pest and disease cycles. It also provides flexibility for producers to respond to changes in agricultural prices and import and export market conditions.

Nitrogen regulation. Excessive nutrient runoff is a primary cause of eutrophication of surface water. Agriculture is a primary contributor to this problem in many regions, although rotation systems and other field management decisions can be used to manage nitrogen application and reduce runoff.

Agriculture provides ecosystem services and many disservices. The cost of ecosystem disservices from agriculture should not be understated. For example in the Llagas subbasin, the rate of domestic well contamination above the nitrate MCL is known to be high, and the primary causes include fertilizers used in agriculture and septic tanks. This analysis focuses on the value of ecosystem services but careful attention should be paid to tradeoffs between the benefits described in this report and potential costs along other dimensions.

Several dozen studies were reviewed and 22 were identified as relevant for Santa Clara County. From these, 4 studies were identified for use in the meta-analysis. The decision to include the study in the meta-analysis was based on three criteria:

- The study estimates some or all of the 7 ecosystem service values for agriculture.
- The study used data from a region with a large agriculture-urban interface similar to that found in Santa Clara County.
- The study was peer-reviewed or part of a public report that was based on peer-reviewed publications.

Additional estimates of the value of groundwater recharge from agriculture were calculated to update values identified in the meta-analysis. The additional analysis used District and California Department of Water Resources water use data to estimate deep percolation using a soil-water balance for major crops in the county.

6.1.1. Results

Table 5 summarizes total ecosystem service values for the seven services considered in this analysis.

Flood control ecosystem service values range between $42 and $86 per acre per year. The value of flood control ecosystem services is typically estimated using an avoided cost approach. In the avoided cost framework the estimated value of an agricultural acre of flood control benefits is based on the change in risk and additional cost of flood events if the land were converted to urban use. Values in Santa Clara County are likely to be higher given the high-value urban land in North County, and significant agriculture-urban interface in South County.

Groundwater recharge ecosystem service values identified in the literature review range between $22 and $44 per acre per year. Groundwater recharge benefits are estimated using a soil-water balance approach and include the benefits from deep percolation of irrigation water and precipitation. Irrigation and precipitation in excess of consumptive use goes to soil capacity, surface runoff, or deep percolation. Studies reviewed for the meta-analysis typically make location specific adjustments for the proportion of soil capacity and surface runoff in order to estimate the amount of groundwater recharge provided by an average acre. The studies identified in the literature review are not representative of Santa Clara County water values and conditions. This estimate is updated in the following section.
Table 5. Meta-Analysis of the Total Value of Ecosystem Services Provided by Agriculture

<table>
<thead>
<tr>
<th>Service</th>
<th>Total Value ($/ac per year)</th>
<th>Summary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Control</td>
<td>$42 – $86</td>
<td>Santa Clara County is likely at or above the high end of this range due to high cost of flood events.</td>
</tr>
<tr>
<td>Groundwater Recharge</td>
<td>$22 – $44</td>
<td>This value represents the average for direct recharge from irrigation and precipitation. Santa Clara County has a higher value and this estimate is further refined.</td>
</tr>
<tr>
<td>Water Quality</td>
<td>$27</td>
<td>Value represents an average, range varies from positive to negative depending on the crop.</td>
</tr>
<tr>
<td>Pollination</td>
<td>$19 – $64</td>
<td>None.</td>
</tr>
<tr>
<td>Habitat</td>
<td>Varies</td>
<td>Estimates are both crop and species-specific. Excluded from this analysis.</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>$31</td>
<td>None.</td>
</tr>
<tr>
<td>Nitrogen Regulation</td>
<td>$0 – $433</td>
<td>Estimates are crop-specific and can be negative in some cases.</td>
</tr>
</tbody>
</table>

Additional analysis was performed to refine estimates of the groundwater recharge value in Santa Clara County. The analysis estimates groundwater recharge from irrigated agriculture and dry farmed grain hay and does not include other sources of recharge such as that in developed areas. The amount of groundwater recharge depends on factors such as soil capacity and surface runoff. These factors are varied in the analysis in order to generate a lower and upper-bound scenario. Table 6 summarizes the results of the analysis. Groundwater recharge is estimated at between 10,686 and 13,140 acre-feet per year. This translates into an annual average of 0.55 to 0.68 acre-feet of groundwater recharge provided by an acre of harvested agricultural land in Santa Clara County. The average cost of an acre foot of agricultural water to the District is $246 per acre-foot (as of Fiscal Year 2014) and this is used to value the groundwater recharge. A cost of $246 per acre foot of agricultural water and recharge of between 0.55 and 0.68 acre-feet per acre implies a groundwater recharge ecosystem service value between $135.30 and $167.28 per acre per year. Assumptions used for the calculation can be found in technical appendix B.

The groundwater recharge ecosystem service value represents the direct total value for an agricultural acre. If an acre is converted to urban development it would be necessary to estimate the difference in recharge between the two land use types in order to calculate the net effect.

Table 6. Groundwater Recharge Ecosystem Service Value in Santa Clara County

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Groundwater recharge (af/year)</th>
<th>Acre-feet per acre per year</th>
<th>Value per af ($/af)</th>
<th>Groundwater Recharge Value ($/ac per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Assumptions</td>
<td>10,686</td>
<td>0.55</td>
<td>$246</td>
<td>$135.30</td>
</tr>
<tr>
<td>Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Assumptions</td>
<td>13,140</td>
<td>0.68</td>
<td>$246</td>
<td>$167.28</td>
</tr>
<tr>
<td>Estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taking the meta-analysis results for the value of flood control benefits presented in table 5 and the groundwater recharge estimates presented in table 6, the estimated total value of groundwater recharge and flood control ecosystem services provided by agriculture to Santa Clara County is between $177.30 and $253.28 per acre per year.

Ecosystem services are difficult to define and challenging to value. Work continues to develop the scientific methodologies to understand ecosystem processes and the economic approaches to value individual components.
7. Analysis of the Agricultural Groundwater Charge

This section provides an overview of the methods used to estimate the direct costs to Santa Clara County growers resulting from changes in the agricultural groundwater charge. Technical model details, references and the logic behind the analysis can be found in technical appendix C.

The ability to analyze changes in the groundwater charge under short run and long run conditions requires an economic model of the agricultural economy in Santa Clara County which is able to reflect the incremental effects of changes in water costs. Changes in local economic activity occur gradually as costs and benefits change, so there is a corresponding difference between short run and long run analysis. Grower response to increasing groundwater charges will be a smooth adjustment, rather than a sudden shift out of production.

7.1. Groundwater Charge Scenarios

The analysis considers three scenarios over a 10 year time horizon:

- Baseline
- Agricultural groundwater charge increasing to 10 percent of M&I over a 10-year time period
- Agricultural groundwater charge increasing to 25 percent of M&I over a 10-year time period

Table 7 summarizes the agricultural groundwater charge in the three scenarios. As shown, baseline conditions have the agricultural groundwater charge increasing from the current level (FY 2014) of $18.30 per acre-foot to $18.90 per acre-foot in FY 2015, up to $24.82 in FY 2024. The agricultural groundwater charge increases to $41.39 and $103.36 by 2024 in the 10 percent and 25 percent of M&I scenarios, respectively.

Table 7. Agricultural Groundwater Charge ($/af) by Fiscal Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.90</td>
<td>19.50</td>
<td>20.10</td>
<td>20.70</td>
<td>21.30</td>
<td>21.91</td>
<td>22.51</td>
<td>23.11</td>
<td>23.71</td>
<td>24.82</td>
</tr>
<tr>
<td>10% of M&I</td>
<td>19.86</td>
<td>21.55</td>
<td>23.38</td>
<td>25.37</td>
<td>27.52</td>
<td>29.86</td>
<td>32.40</td>
<td>35.16</td>
<td>38.14</td>
<td>41.39</td>
</tr>
<tr>
<td>25% of M&I</td>
<td>21.76</td>
<td>25.88</td>
<td>30.77</td>
<td>36.58</td>
<td>43.50</td>
<td>51.72</td>
<td>61.49</td>
<td>73.12</td>
<td>86.93</td>
<td>103.36</td>
</tr>
</tbody>
</table>

The direct economic cost to growers from changes in the agricultural groundwater charge equals the difference between the baseline scenario and the 10 and 25 percent scenarios, respectively.

7.2. Santa Clara County Agricultural Production Model

An economic model of agricultural production in Santa Clara County was constructed for this analysis. The model includes 18 crop groups and their corresponding revenues and production costs. The model is defined over 3 groundwater areas including the Santa Clara Plain, Coyote Valley, and Llagas Subbasin. Economic and land use data were collected for the Santa Clara County agricultural sector and the model was calibrated against a particular average year, in this case 2010-2011. The resulting economic model is used to forecast how growers production decisions would change in particular regions in response to higher agricultural groundwater costs, and the effect on farm profitability.

Table 8 summarizes crop acreage across the three Santa Clara County model regions based on 2010-2011 averages.
Table 8. Santa Clara County Model Crop Acreage, 2010-2011 Average

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Santa Clara Plain</th>
<th>Coyote Valley</th>
<th>Llagas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>286</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Apricot</td>
<td>105</td>
<td>41</td>
<td>76</td>
</tr>
<tr>
<td>Beans</td>
<td>6</td>
<td>390</td>
<td>437</td>
</tr>
<tr>
<td>Cherries</td>
<td>0</td>
<td>199</td>
<td>336</td>
</tr>
<tr>
<td>Citrus</td>
<td>118</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>Cucurbits</td>
<td>0</td>
<td>564</td>
<td>404</td>
</tr>
<tr>
<td>Fresh Tomatoes</td>
<td>0</td>
<td>26</td>
<td>732</td>
</tr>
<tr>
<td>Garlic</td>
<td>0</td>
<td>54</td>
<td>245</td>
</tr>
<tr>
<td>Grain</td>
<td>1,155</td>
<td>579</td>
<td>1,916</td>
</tr>
<tr>
<td>Lettuce</td>
<td>15</td>
<td>530</td>
<td>1,908</td>
</tr>
<tr>
<td>Onions</td>
<td>0</td>
<td>12</td>
<td>227</td>
</tr>
<tr>
<td>Other Truck</td>
<td>44</td>
<td>628</td>
<td>3,610</td>
</tr>
<tr>
<td>Pasture</td>
<td>85</td>
<td>22</td>
<td>361</td>
</tr>
<tr>
<td>Processing Tomatoes</td>
<td>0</td>
<td>21</td>
<td>1,014</td>
</tr>
<tr>
<td>Strawberries</td>
<td>0</td>
<td>19</td>
<td>76</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>21</td>
<td>392</td>
<td>753</td>
</tr>
<tr>
<td>Vines</td>
<td>657</td>
<td>324</td>
<td>559</td>
</tr>
<tr>
<td>Walnuts</td>
<td>29</td>
<td>24</td>
<td>111</td>
</tr>
</tbody>
</table>

7.3. Groundwater Costs as a Percent of Variable Costs

Small changes in the agricultural groundwater charge require an estimation framework that can capture the incremental responses of growers. A standard crop budget accounting approach cannot capture incremental grower adjustments because it lacks economic information, such as observed responsiveness to changes in prices and costs, found in classical economic models. Beyond this, an accounting approach does not acknowledge cross-crop effects and the fact that many crops are grown in a rotation that will likely adjust as relative crop profitability changes.

Table 9 summarizes the agricultural groundwater charge as a percentage of variable costs under the baseline, 10 percent of M&I and 25 percent of M&I scenarios. Without proprietary information it is not possible to compute the groundwater costs as a percentage of grower profits. Estimates represent a weighted average over all crop acres in the county. The proportion of variable production costs attributable to the agricultural groundwater charge equals less than 1 percent, on average, under baseline conditions. This increases to a maximum just under 5 percent of variable costs in the 25 percent scenario in fiscal year 2024.

Underlying the weighted averages are large variations by crop type. For flood irrigated water-intensive crops such as alfalfa, the groundwater charge accounts for 14 to 45 percent of variable production costs in the baseline (year 2015) and 25 percent of M&I (year 2024) scenarios, respectively. Other crops such as lettuce have variable production costs that are driven by yield and the corresponding harvest costs such that the groundwater charge accounts for less than 0.3 to 2 percent of variable production costs.
Table 9. Agricultural Groundwater Charge as a Percent of Variable Production Costs, Weighted Average by Fiscal Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.89</td>
<td>0.92</td>
<td>0.95</td>
<td>0.98</td>
<td>1.00</td>
<td>1.03</td>
<td>1.06</td>
<td>1.09</td>
<td>1.12</td>
<td>1.17</td>
</tr>
<tr>
<td>10% of M&I</td>
<td>0.94</td>
<td>1.02</td>
<td>1.10</td>
<td>1.19</td>
<td>1.29</td>
<td>1.40</td>
<td>1.52</td>
<td>1.65</td>
<td>1.78</td>
<td>1.93</td>
</tr>
<tr>
<td>25% of M&I</td>
<td>1.02</td>
<td>1.22</td>
<td>1.44</td>
<td>1.71</td>
<td>2.03</td>
<td>2.40</td>
<td>2.84</td>
<td>3.36</td>
<td>3.97</td>
<td>4.69</td>
</tr>
</tbody>
</table>

Table 10 summarizes the total groundwater cost as a percent of variable production costs under baseline, 10 percent of M&I, and 25 percent of M&I scenarios. The total groundwater cost includes the amortized fixed cost of the pump and well plus the variable operating cost of the pump and minor upkeep and maintenance expenses in addition to the agricultural groundwater charge. The corresponding proportion of variable costs is higher, ranging from just over 4 percent to just under 8 percent of variable production costs.

Table 10. Total Groundwater Cost as a Percent of Variable Production Costs, Weighted Average by Fiscal Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4.12</td>
<td>4.15</td>
<td>4.17</td>
<td>4.20</td>
<td>4.23</td>
<td>4.25</td>
<td>4.28</td>
<td>4.30</td>
<td>4.33</td>
<td>4.38</td>
</tr>
<tr>
<td>10% of M&I</td>
<td>4.16</td>
<td>4.24</td>
<td>4.32</td>
<td>4.40</td>
<td>4.50</td>
<td>4.60</td>
<td>4.71</td>
<td>4.83</td>
<td>4.95</td>
<td>5.09</td>
</tr>
<tr>
<td>25% of M&I</td>
<td>4.25</td>
<td>4.43</td>
<td>4.64</td>
<td>4.89</td>
<td>5.18</td>
<td>5.54</td>
<td>5.95</td>
<td>6.44</td>
<td>7.01</td>
<td>7.68</td>
</tr>
</tbody>
</table>

Groundwater costs, both the agricultural groundwater charge and total groundwater cost, represent a relatively small portion of variable production costs. Even though groundwater is a relatively small portion of variable costs, growers respond economically to incremental changes in the groundwater charge. There is a corresponding cost to growers and the county. The following sections highlight this finding and the results of the analysis.

7.4. Direct Costs to Growers

The model framework estimates the direct cost of the change in the agricultural groundwater charge to growers at each point in time as the difference between baseline conditions and each of the two groundwater charge scenarios. There are four key direct costs to growers:

- Shifts in the regional crop mix (net revenue loss)
- The decision to permanently fallow land (fallow land cost)
- Increased groundwater cost to all growers (additional groundwater cost)
- Cost to mushroom farms and nurseries

Growers are likely to shift the regional crop mix and alter rotations in response to changes in the cost of groundwater. Changes in production costs alter the relative profitability between crops and profit maximizing growers are expected to adjust land use patterns accordingly. This effect is additionally governed by the acreage response elasticities which show how growers have historically responded to changes in production costs and crop prices. The cost of the shift in crop mix depends on the crops brought into and out of production which is estimated using the Santa Clara County model.

As water costs increase it may become economically optimal to fallow less productive land. The cost of land out of production is equal to the land rental rate, which in Santa Clara County averages $300 per acre.

All growers in Santa Clara County would face higher groundwater charges per acre foot. The difference between the baseline conditions and the 10 percent or 25 percent scenario, multiplied by the total acre-feet of
groundwater used represents the additional cost to growers. Total agricultural groundwater use varies with the estimated crop mix but is generally around 27,800 acre-feet per year. The method used to calculate the total groundwater cost can be found in technical appendix C.

Costs to mushroom farms and nurseries are treated separate from standard crop production. Changes in these industries are more likely to be driven by changes in regional demand for bedding plants and increased competition in mushroom production from Pennsylvania, Canada, and China. Consequently, mushroom farm and nursery response to changes in the groundwater charge is modeled as perfectly inelastic. This means that these industries bear the full cost of the increase in the groundwater charge and do not shift production or pass on costs to consumers.

The incremental cost to growers represents the difference between baseline conditions and the respective policy at each point in time. The total cost is the sum of the incremental costs. Due to general price inflation a dollar today is worth more than a dollar in the future. The sum of the incremental costs is consequently "discounted" back to a present value figure. This represents the present value of the total cost to growers.

7.4.1. Agricultural Groundwater Charges at 10 Percent of M&I Rates

Table 11 summarizes the cost to growers, relative to baseline, when the groundwater charge increases to 10 percent of M&I rates by 2024. The table shows the incremental cost for each of the four components for each of the 10 years of phase-in.

The total cost to growers is equal to the present discounted value of the 10 year stream of losses, plus the infinite future stream of losses from year fiscal year 2024 forward. Growers face an increasing incremental cost for the first 10 years of phase in, then it is assumed that the difference between baseline and 10 percent of M&I rates remains constant into the future. To the extent that relative rates converge or further diverge the present value of the total cost to growers will decrease or increase, respectively. Using a standard discount rate of 5 percent, the present value of the total cost to growers is $6.96 million.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Groundwater Cost</td>
<td>25.3</td>
<td>54.0</td>
<td>86.5</td>
<td>123.1</td>
<td>163.9</td>
<td>209.5</td>
<td>260.5</td>
<td>317.4</td>
<td>380.0</td>
<td>436.3</td>
</tr>
<tr>
<td>Net Revenue Loss</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Land Fallow Cost</td>
<td>0.2</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
<td>1.7</td>
<td>2.3</td>
<td>3.0</td>
<td>3.8</td>
<td>4.7</td>
<td>5.2</td>
</tr>
<tr>
<td>Mushroom and Nursery</td>
<td>1.3</td>
<td>2.7</td>
<td>4.3</td>
<td>6.2</td>
<td>8.2</td>
<td>10.5</td>
<td>13.1</td>
<td>15.9</td>
<td>19.1</td>
<td>21.9</td>
</tr>
<tr>
<td>Total Cost</td>
<td>26.8</td>
<td>57.4</td>
<td>91.8</td>
<td>130.9</td>
<td>174.4</td>
<td>223.0</td>
<td>277.6</td>
<td>338.3</td>
<td>405.2</td>
<td>465.0</td>
</tr>
</tbody>
</table>

Results show that the largest cost to growers is the cost of additional groundwater. Changes in the crop mix (reflected in net revenue loss) and increased land fallowing are relatively minor factors in response to relatively small increases in the groundwater charge.

The general trend underlying the analysis is an incremental shift out of lower-value and higher water use crops, that are not grown as part of a higher value rotation, into higher-value and lower water use crops. Incremental costs increase from $26,800 in fiscal year 2015 to $465,000 in fiscal year 2024. Costs to growers increase at an increasing rate as the groundwater charge increases. From fiscal year 2024 onward the incremental costs are assumed constant at $465,000.

7.4.2. Agricultural Groundwater Charges at 25 Percent of M&I Rates

Table 12 summarizes the cost to growers, relative to baseline, when the groundwater charge increases to 25 percent of M&I rates by 2024. The table shows the incremental cost for each of the four components for each of the 10 years.
The total cost to growers is equal to the present discounted value of the 10 year stream of losses, plus the infinite future stream of losses from fiscal year 2025 into the future. Using a standard discount rate of 5 percent, the present value of the total cost to growers is $35.91 million.

Table 12. Direct Cost to Growers, by Fiscal Year (dollars in thousands) for 25 percent of M&I

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Groundwater</td>
<td>75.4</td>
<td>168.1</td>
<td>281.1</td>
<td>418.1</td>
<td>584.2</td>
<td>783.9</td>
<td>1,022.8</td>
<td>1,299.7</td>
<td>1,620.4</td>
<td>1,975.9</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
</tr>
<tr>
<td>Net Revenue Loss</td>
<td>0.4</td>
<td>0.9</td>
<td>1.5</td>
<td>2.3</td>
<td>3.1</td>
<td>4.1</td>
<td>15.6</td>
<td>75.2</td>
<td>159.9</td>
<td>268.3</td>
</tr>
<tr>
<td>Land Fallow Cost</td>
<td>1.2</td>
<td>2.7</td>
<td>4.7</td>
<td>7.0</td>
<td>9.9</td>
<td>13.4</td>
<td>22.0</td>
<td>53.6</td>
<td>99.0</td>
<td>164.7</td>
</tr>
<tr>
<td>Mushroom and Nursery</td>
<td>3.8</td>
<td>8.4</td>
<td>14.1</td>
<td>21.0</td>
<td>29.3</td>
<td>39.4</td>
<td>51.5</td>
<td>66.0</td>
<td>83.5</td>
<td>103.7</td>
</tr>
<tr>
<td>Total Cost</td>
<td>80.8</td>
<td>180.2</td>
<td>301.4</td>
<td>448.4</td>
<td>626.6</td>
<td>840.8</td>
<td>1,111.8</td>
<td>1,494.5</td>
<td>1,962.8</td>
<td>2,512.6</td>
</tr>
</tbody>
</table>

Results show that, as with the 10 percent scenario, the largest cost to growers is the cost of additional groundwater. Shifting crop mix and increased land fallowing are relatively minor occurrences over small changes in the groundwater charge. Net revenue losses (shift in crop mix) begin to increase at an increasing rate beginning in 2021 as the agricultural groundwater charge exceeds $61 per acre foot.

Incremental costs increase from $80,800 in fiscal year 2015 to over $2.51 million in fiscal year 2024. Costs to growers increase at an increasing rate as the groundwater charge increases. From fiscal year 2024 forward the incremental costs are assumed constant at $2.51 million.

7.5. Changes in Irrigated Acres

Growers are expected to fallow some land in response to higher groundwater costs. Fallow land corresponds to land permanently taken out of production in response to higher groundwater charges, not land fallow as part of a crop rotation. Land out of production is expected to come from lower quality production conditions and farms that already operate with higher production costs. Growers who fallow land will lose the ability to rent the land, reflecting the fixed costs of production. Land rents for an average of $300 per acre in Santa Clara County. Table 13 summarizes total land out of production in response to higher agricultural groundwater charges.

Table 13. Fallow Acres due to Increased Groundwater Charge

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 percent Scenario</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>25 percent Scenario</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>23</td>
<td>33</td>
<td>45</td>
<td>73</td>
<td>179</td>
<td>330</td>
<td>549</td>
</tr>
</tbody>
</table>

The analysis shows that total land out of production is expected to be a small proportion of the total harvested land area. The maximum land out of production in the 10 percent scenario (17 acres) is less than 1 percent of total harvested acres.

When the groundwater charge increases to 25 percent of M&I rates by 2024, total land out of production is still a relatively small proportion of total acreage. A maximum of 549 acres out of production corresponds to less than 3 percent of total county harvested acreage.

The agricultural community will correctly note that there are a range of external pressures that are not captured by this analysis. Increases in all other production costs are held constant in real terms in order to isolate the
effect of increasing the agricultural groundwater charge. Conversely agricultural producers have enjoyed a steady increase in real prices and farm productivity in recent years. Increases in agricultural prices and productivity are held constant in order to isolate the effect of increasing the agricultural groundwater charge. All other external costs and benefits are held constant in the analysis.

The analysis considers changes within the Santa Clara County agricultural economy and the decision of whether or not to fallow land is fundamentally a decision about whether to continue farming in Santa Clara County. Some growers may decide to shift production to other regions such as Salinas or the Central Valley, or areas to the south in San Benito County. While this decision is partially captured by the acreage response elasticities implicit in the model, it is likely that response in some parts of the county may be more elastic. Consequently, fallow acreage estimates in this analysis should be viewed as conservative estimates.

7.6. Costs to the County Economy

This analysis summarizes the cost to growers from increases in the groundwater charge. This study has not considered the effects on the Santa Clara County economy, such as jobs, output value, and county tax revenues. Additionally, this study is concerned with the direct cost and has not estimated indirect and induced costs on the broader economy. Estimation of total costs to the county and agricultural employment would require additional analysis with a regional input-output model of Santa Clara County, such as IMPLAN.
8. Summary of Findings

This study has provided an independent and quantitative assessment of the value of agricultural open space, the value ecosystem service provided by agriculture, and the direct economic costs to growers from changes in the agricultural groundwater charge in Santa Clara County.

The value of agricultural open space was found to be generally positive. Cropland increases nearby (within 0.25 mile) home values by 2.2 percent and open rangeland increases values by 2.56 percent. The total value of an agricultural acre depends on the location and number of surrounding homes. Intensive agriculture decreases home values within 0.33 mile by 6.4 percent. The net effect of loss (or addition) of agricultural open space depends on the location, homes, and types of open space land use.

The value of ecosystem services provided by agriculture is a relatively new area of research and methods are still being refined. A meta-analysis and additional county-specific estimates found that the total ecosystem service value of flood control and groundwater recharge is between $177.30 and $253.28 per acre per year. Future studies should be location specific and be aware of the costs of agricultural runoff and other disservices.

Baseline conditions and two agricultural groundwater charge scenarios were evaluated using an economic model of Santa Clara County agriculture. Results of the analysis show that small changes in the agricultural groundwater charge will lead to incremental production adjustments by growers, but that the agricultural industry will not collapse. Total land fallowing is minimal. When the agricultural groundwater charge increases to 10 percent of M&I rates over a 10 year period, the present value of the total cost to growers is $6.96 million. Total land fallowing is 17 acres, less than 1 percent of total harvested acres. When the agricultural groundwater charge increases to 25 percent of M&I rates over a period of 10 years, the present value of the total cost to growers is $35.91 million. Total land fallowing is 549 acres, less than 3 percent of total harvested acres.
Technical Appendix A: Value of Open Space

This technical appendix provides an independent and quantitative assessment of the value of agricultural open space in Santa Clara County using a comprehensive literature review and meta-analysis.

A.1. The Value of Open Space in Santa Clara County

Open agricultural space provides a range of amenities to a community beyond the direct value of the crops produced and the revenue generated. Many such amenities are positive, such as aesthetic value and scenery for nearby residents, recreation opportunities, ecosystem services (flood control, water supply, water quality, habitat, recreation, and extraction), and prevention of traffic and urban sprawl. Because of these benefits, state and local governments have instituted various policies designed to preserve agricultural land, including zoning changes and purchases of conservation easements. The District encourages preservation of open space through the Open Space Credit, which essentially functions as an agricultural irrigation water subsidy designed to encourage agricultural lands in the county. Quantifying the value of open agricultural land is particularly relevant to Santa Clara County, where fragmented high-tech and residential development is interspersed with high value agriculture.

Figure A1 illustrates land use and the agriculture-urban interface in 2010. Agricultural open space includes cropland, rangeland, and intensive agriculture. Open space may provide both positive and negative amenities depending on the type and location. Correctly valuing open space requires careful statistical analysis and should be tailored to the specific region of interest. The analysis in this appendix includes a comprehensive review of the economic literature on open space valuation in order to identify the studies most applicable to Santa Clara County.
Open space is what economists refer to as a non-market good because it has value, but not a market where it is traded. There are a number of methods that economists use to value such goods, which are discussed in subsequent sections of this technical appendix. Non-market values are typically classified as either use or non-use values. Use values are benefits related to seeing or using the open space (e.g. pleasant views, experiencing improved water quality, having increased opportunity for viewing wildlife), while non-use values are instead derived from simply knowing that the open space exists. This analysis relies on a comprehensive review of the economics literature and public policy reports valuing open space in other regions using a range of methods. Relevant studies are identified and used to generate relevant values for Santa Clara County. This analysis should be thought of as a representative acre analysis in that it estimates the value of an average representative acre of agricultural open space situated next to an average representative urban development as reflected in the average value of nearby homes.

A.1.1 An Overview of the Value of Open Space

Contingent Valuation (CV) methods, typically in the form of stated or revealed preference, are commonly used to value non-market goods. CV methods recognize that there is no market in which to establish the price of open space and instead use other sources of information to statically infer the price. Valuation methods include:

- Stated Preference
- Revealed Preference
• Cost of Travel
• General Equilibrium
• Cost of Service

Stated preference methods rely on carefully designed surveys that ask property owners to state what they are willing to pay to avoid conversion of existing open space to alternative uses. Revealed preference analysis measures how property values change when they are associated with changes in open space, holding all other factors constant. The revealed preference method relies on econometric (statistical) analysis to decompose the price of a home into individual attributes. For example, proximity to transportation, school district, house size, neighborhood, and a number of other factors can affect the sale price of a home, in addition to proximity to open space. In order to correctly value open space, the analysis must control for all other factors that affect the price of a home. Other less common valuation methods include cost of travel, general equilibrium modeling, and cost of services approaches.

Agricultural open space provides direct and indirect benefits. Direct benefits include those benefits accrued to agricultural land owners and owners of adjacent properties. For example, the presence of agricultural open space may provide growers with a more robust agricultural industry, such as cheaper and more readily available input and labor markets. Residential owners of adjacent properties may see increased property values from proximity to agricultural open space and this translates into greater property tax income for the county. Indirect benefits include preservation of land base for agriculture to expand and respond to changing market conditions, preservation of rural character, and prevention of urban sprawl.

The value of open space depends on the type of land use. Mushroom farms will not provide the same aesthetic or biodiversity value as alfalfa stands. Economic studies have additionally shown different values for permanent and temporary open space. Homeowners place a higher value on nearby land that is zoned (or otherwise restricted) for permanent open space.

A.1.2. Positive and Negative Amenities

Open space may have both positive and negative amenity value. Some common negative amenities due to agricultural production:
• Noise
• Odors
• Dust, pesticides
• Increased agricultural traffic

Negative amenities include increased noise from agricultural production processes, which may decrease the value of surrounding homes. For example, a study by Ready and Abdalla (2005) of housing prices in the Philadelphia area shows that open space (including agricultural space) has a positive impact on house prices within 400 meters, but that larger-scale livestock operations (Confined Animal Feeding Operations, or CAFOs) can reduce house prices out to 1,600 meters by as much as 6.4 percent.

Some common positive externalities:
• Aesthetic value
• Recreation
• Water Supply
• Ecosystem benefits
- Prevention of noise, congestion, and other effects of sprawl
- Agricultural marketing and development

Positive amenities are those that are expected to increase nearby home values. For example, agricultural open space reduces urban sprawl, traffic, and noise, which homeowners likely desire.

Although there are certain situations where agricultural land may provide negative amenities to the surrounding area, most studies find that agricultural land generates positive nonmarket benefits. Analysis of Santa Clara County data and review of existing economic studies shows there are three key types of agricultural open space: (i) cropland, (ii) rangeland, and (iii) intensive agriculture. Cropland is land that is actively farmed. Rangeland includes non-irrigated and non-seeded grazing land, native vegetation, and forests. Intensive agriculture includes dairies, mushroom farms, and related production that likely generate negative amenities such as noise and odors.

A.2. Meta-Analysis of the Value of Open Space

An exhaustive literature review focused on identifying studies relevant to valuing open space in Santa Clara County. Santa Clara County is unique for several reasons. First, the county hosts a significant concentration of high-tech firms. Economies created by large tech firms attract additional startups and employees to the area and increase pressure on both residential and commercial development. Indicators for the macro-economy have been steadily increasing since the worst of the recession in the Fall of 2008, and pressure on commercial and residential development has followed. In addition to a large tech industry Santa Clara County provides productive farmland for a range of high value agriculture including fruit and nut orchards and bell peppers. Residential and commercial development in North County has pushed remaining agriculture into South County, which has resulted in a checkerboard pattern of productive farmland and high-value commercial and residential development.

Economists have studied the value of open space using a range of approaches. Over 30 studies were reviewed and 12 studies were identified as potentially relevant for California areas. After careful review and analysis 3 studies were selected to value Santa Clara County open space in cropland, rangeland, and intensive agriculture. Three key criteria were used to identify applicable studies:

- The study estimates some or all of the 7 ecosystem service values for agriculture.
- The study used data from a region with a large agriculture-urban interface similar to that found in Santa Clara County.
- The study was peer-reviewed or part of a public report that was based on peer-reviewed publications.

The study by Kuminoff (2009) was identified as most applicable for the value of cropland agricultural open space. Kuminoff estimates a revealed preference model using data from San Joaquin County. His analysis allows for both positive and negative amenity values for different types of open agricultural space. He estimates that converting one acre of cropland to urban development within 0.25 mile of the average home would reduce the price by 2.2 percent (95 percent Confidence Interval = [2.1, 2.8]) on average. For a small share (3–7 percent) of homes that are directly next to cropland, the negative amenities provided by agriculture dominate such that converting an acre of cropland to urban development would result in higher home values. Kuminoff concludes that there is evidence that open agricultural land provides generally positive value to nearby urban development.

Cropland and the agriculture-urban interface are different between San Joaquin and Santa Clara Counties for a number of reasons. Santa Clara generally produces higher value agriculture and has higher per-capita income, land and real estate values. It is not possible to determine whether these differences would bias estimates up or
down when extrapolating to Santa Clara County without additional data. San Joaquin and Santa Clara Counties are areas with a similar agriculture-urban interface and, although they are subject to different county-level policies, they are subject to the same state policies and trends. San Joaquin County represents the best available proxy for Santa Clara County for which an existing study was available. The study by Kuminoff (2009) captures the essential aspects of the value of agricultural open space and results show that proximity to cropland increases home values for a large majority of single-family homes near the urban-agricultural border.

The study by Irwin (2002) was identified as most applicable for the value of forest and rangeland open space. Irwin estimates a revealed preference model to value open space using data from Maryland counties. Irwin's analysis estimates the value of open space in crop production, in addition to open space in forests and rangelands. Irwin estimates that converting one acre of rangeland to urban development within 0.25 mile of the average home would reduce the price by 2.6 percent (95 percent Confidence Interval = [2.2, 3.1]) on average.

Maryland represents a significantly different geographic region than Santa Clara County. Maryland has different development laws, home values, resident preferences and transportation options. All of these factors significantly affect confidence in applying Maryland results to Santa Clara County. However, the work by Irwin (2002) represents a peer-reviewed publication in a leading economic journal and the quantitative methods are very well refined. In the absence of a study using the same methods and California data, Irwin's work represents the best rangeland open space study identified in the literature review. Note that work by Howard (2011) estimates the value of rangeland in Kern County California. However, his current work focuses on the economic theory underlying his approach and quantitative estimates are still a work in progress. Personal communication with Howard found that he felt the study by Irwin (2002), specifically a value of 2.6 percent change in home value, was consistent with his preliminary findings in California.

The study by Ready and Abdalla (2005) was identified as the most applicable for the value of intensive agricultural open space. Ready and Abdalla estimate the positive and negative amenities from various types of agricultural open space in Pennsylvania. They use a revealed preference approach and analyze a comprehensive dataset on home sales, neighborhood characteristics, and proximity to open space. They identify the value (cost) of negative amenities such as noise, runoff, and pollution from Confined Animal Feeding Operations (CAFOs). They find that converting one acre of CAFO to urban development within one-third of a mile of the average home would increase its price by 6.4 percent (95 percent Confidence Interval (CI) = [3.2, 8.1]) on average.

There was a limited range of studies that estimated the negative amenity value of intensive agriculture. Mushroom farms, smaller scale livestock operations and, to a lesser extent, nurseries are the primary types of intensive agriculture in Santa Clara County expected to decrease nearby home values. The study by Ready and Abdalla (2005) focuses on CAFOs, which are used as a proxy for different types of intensive agriculture in Santa Clara. Although the study has a different geographic location, the results are based on robust economic analysis and represent defensible values for the negative value of intensive agriculture.

A.2.1. Summary of Results

The analysis focused on the value of an average parcel of agricultural open space. Valuation of all open space in the county would require collecting a comprehensive dataset of all agricultural and urban lands in a geospatial database. It would be necessary to know the location of every urban parcel relative to cropland, rangeland, or intensive agriculture. These areas are highlighted in yellow in Figure A1. It is beyond the scope of this study to identify the total number of parcels at the agriculture-urban interface in Santa Clara County.

Analysis of the literature shows that 0.25 mile proximity to agricultural cropland open space increases home values by 2.2 percent on average. Proximity to forests, rangeland, and native vegetation increases home values by 2.56 percent on average. Some open space provides negative value. Proximity within 0.33 mile of intensive agriculture decreases home values by 6.4 percent on average. Effects dissipate when homes are located farther away from the open space parcel. Table A1 summarizes the key findings of the analysis.
Table A1. Summary of Open Space Value

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Percent change in nearby home values for 1 parcel converted to open space</th>
<th>Radius (mi)</th>
<th>Study</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>2.20</td>
<td>0.25</td>
<td>Kuminoff (2009)</td>
<td>CA</td>
</tr>
<tr>
<td>Forests, rangeland</td>
<td>2.56</td>
<td>0.25</td>
<td>Ready and Abdalla (2005)</td>
<td>MD</td>
</tr>
<tr>
<td>Intensive agriculture</td>
<td>-6.40</td>
<td>0.3</td>
<td>Irwin (2002)</td>
<td>PA</td>
</tr>
</tbody>
</table>

A.2.2. Example Application

The value of converting an acre from urban to agricultural open space depends on the value of nearby homes. Morgan Hill, San Martin, and Gilroy are three cities closest to the agriculture-urban interface in Santa Clara County.

Consider conversion of 1 parcel from existing urban use to agricultural open space within 0.25 mile of an average home in the cities of Morgan Hill, San Martin and Gilroy. Table A2 summarizes the average change in home value in each location for three open space types. Column 2 lists the average home sale price as of May 2013 in each location. Average home sale prices are compiled from the Zillow Home Value Database and represent an average sale price for all homes sold between January and May 2013. Column 3 shows the change in the average home value if 1 parcel of urban development is converted to crop production. On average, home values increase by 2.2 percent, reflecting the implicit value of open space to the region. For example, in Gilroy this would increase the average value of homes located within 0.25 mile by $9,875. If the parcel was instead converted to rangeland the value would be $11,491. The average home value would decrease if the urban parcel was instead converted to intensive agriculture such as a mushroom farm. These changes in home values hold all other factors constant and consequently represent the implicit value of agricultural open space.

The net value will depend on the quantity and location of different agricultural open space. For example, if a single parcel, located within 0.25 mile of an average home in Gilroy, was converted from urban development to cropland and another parcel to intensive agriculture, home values near both parcels would decrease in value by 4.2 percent (2.2 - 6.4 percent), on average. The value of open space in this case is -$18,825 ($448,875 x 4.2%).

Table A2. Value of Open Space Example

<table>
<thead>
<tr>
<th>City</th>
<th>Average Home Price*</th>
<th>Cropland</th>
<th>Rangeland</th>
<th>Intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morgan Hill</td>
<td>$581,250</td>
<td>$12,788</td>
<td>$14,880</td>
<td>-$37,200</td>
</tr>
<tr>
<td>San Martin</td>
<td>$678,775</td>
<td>$14,933</td>
<td>$17,377</td>
<td>-$43,442</td>
</tr>
<tr>
<td>Gilroy</td>
<td>$448,875</td>
<td>$9,875</td>
<td>$11,491</td>
<td>-$28,728</td>
</tr>
<tr>
<td>Santa Clara County</td>
<td>$683,025</td>
<td>$15,027</td>
<td>$17,485</td>
<td>-$43,714</td>
</tr>
</tbody>
</table>

*Source: January 2013 - May 2013 average, computed from Zillow Home Value Database

It is important to note studies have shown that very close proximity to crop production actually decreases average home values. Although home values near cropland increase by 2.2% on average, for some homes situated directly adjacent to fields values actually decrease. A location too close to a productive field would expose the homeowner to negative amenities such as noise, pesticides, and other production externalities. This partially explains the prevalence of agricultural-urban buffer zones in many cities and emphasizes the importance of case-specific analysis.
A.3. Conclusion

The analysis clearly shows that there are positive effects on home values located in close proximity to agricultural open space. On average, home values increase by 2.2 - 2.56 percent when located close (within 0.25 mile) to cropland or rangeland. There are a few types of agriculture which could have negative effects from odors, noise, and other factors. In Santa Clara County these include mushroom farms and small-scale livestock operations. Proximity (within 0.33 mile) to intensive agriculture such as mushroom farms decreases home values by 6.4 percent on average as a result of negative amenities. Given the checkerboard development pattern in Santa Clara County and the limited amount of intensive agriculture open agricultural space contributes positive value to Santa Clara County.

A.4. Relevant Studies Reviewed

Technical Appendix B: Ecosystem Service Value

This technical appendix provides an independent and quantitative assessment of the value of ecosystem services provided by agriculture in Santa Clara County using a comprehensive literature review and meta-analysis.

Agricultural land provides ecosystem services to the surrounding region in the form of hydrological services, carbon sequestration, increased biodiversity and habitat preservation for flora and fauna. The District encourages preservation of open space through the Open Space Credit, which essentially functions as an agricultural irrigation water subsidy to encourage agricultural lands in the county.

Open space and agricultural land in Santa Clara County includes rangeland, land in conservation easements, and native vegetation, in addition to intensive agriculture and crop production. The analysis in this appendix includes a comprehensive review of the economic and ecological literature on the value of ecosystem services provided by these land uses and identifies studies that are most applicable to Santa Clara County. Relevant studies are used to provide a range of estimates for the value of ecosystem services provided by agricultural land within the county.

B.1. Ecosystem Services

Ecosystem services can be broadly defined as the amenities provided by resources and natural systems. Services include maintenance of soil quality, species habitat, clean drinking water, and a general existence value through support provided to a larger ecosystem network. Ecologists have identified over one hundred ecosystem services that can be associated with agriculture and open space. Most services are location-specific such as habitat for local species. This technical appendix considers seven common ecosystem services provided by agriculture and specific attention is paid to flood control and groundwater recharge.

Scientists have long recognized the importance of ecosystems but the economic value of these services has only recently attracted attention. The United Nations commissioned the Millennium Ecosystem Assessment (MEA) in the year 2000 to “assess the consequences of ecosystem change for human well-being and to establish the scientific basis for actions needed to enhance the conservation and sustainable use of ecosystems and their contributions to human well-being.” The MEA included contributions from over 2,000 scientists. The report identified the following four categories of ecosystem services:

- **Provisioning services** – Products provided by the ecosystem.
 - **Examples**: Food, timber, fiber, biochemicals, pharmaceuticals, water.

- **Regulating services** – Processes that are regulated by the ecosystem.
 - **Examples**: Carbon sequestration, flood control, water recharge, water quality.

- **Cultural services** – Intangible existence value of the ecosystem.
 - **Examples**: Recreation opportunities, aesthetic value, spiritual benefits.

- **Supporting services** – The ecosystem as part of a broader natural process.
 - **Examples**: Soil formation, photosynthesis, nutrient cycling.

Services provided by agriculture typically fall into the provisioning and regulating categories listed above. Primary provisioning services include the food value of crops produced on the land. Regulating services include a range of benefits such as flood control, groundwater recharge, erosion control, pollination, and provision of
habitat, to name a few. This technical appendix will review the range of common ecosystem services provided by agriculture and will focus particularly on flood control and groundwater recharge.

B.1.1. Methods for Estimating the Value of Ecosystem Services

Economic valuation of ecosystem services stems from an interest in using ecosystems to augment engineered control projects. Wetlands can provide flood control and water quality benefits, which can also augment existing levees or water treatment plants. The first attempts to value ecosystem services come from Daily et al. (1997) and Costanza et al. (1997). Daily and Costanza and co-authors attempted to estimate the total value of services provided by global ecosystems using a variety of new methodologies. They estimated the total value of global ecosystem services to fall in the range of $16–54 trillion per year. Although this work has since been recognized as a rough approximation, it did serve to stimulate a large body of research and policy reports attempting to value ecosystem services.

Many ecosystem services are non-market goods in that they are not actively traded in a market with an observed price. Further complicating the problem, the appropriate geographic scale for analysis varies widely as some services are local in nature, such as pollination, while others are global, such as carbon sequestration. Even with a well defined geographic scale the valuation of services remains location dependent. For example, soil factors (organic matter, texture and sediment profile), climatic factors (solar radiation, precipitation, temperature) and naturally occurring flora and fauna can affect the value of an ecosystem service. The fact that management practices can have a significant effect on the level of ecosystem services produced also adds to the complexity of valuing these services. Organic and conventional agriculture have different effects on the ecosystem, and consequently the ecosystem service values associated with the two production processes vary greatly. Applied policy research and the academic literature continue to develop new methods to value ecosystem services.

The total value of ecosystem services equals to the sum of all of the individual services provided. Services for agriculture may include flood control, erosion control, water quality, food production, crop biodiversity, and biological control, among others. Each individual service requires a different valuation approach and must be considered on a case-by-case basis.

The value of individual ecosystem services can be classified as market or non-market. Market values are those for which the value is directly observable in a market through prices. For example, crops grown on the land provide a direct value for food on the market. Non-market values include those for which no market exists. For example, the habitat value of agricultural land as a hunting ground for predatory bird species is not traded in the market. Swinton et al. (2007) identify four common methods used to estimate the non-market values of ecosystem services.

- Contingent valuation
 - Using the market price of farmland and surrounding properties to infer the value of non-market attributes
- Stated preference methods
 - Conducting surveys to identify individuals willingness-to-pay for services
- Avoided cost methods
 - Assessing flood risk with and without agricultural lands present to infer the value of agriculture for flood control
- Approaches based on cost of mitigation or replacement of resources with other sources
Removal of wetlands may require building an additional water treatment facility which has an observable cost.

Studies determine appropriate valuation methods by considering the ecosystem services of interest and the geographic scale. It is important to note that measurement and valuation in the context of agricultural ecosystems remain a work in progress.

B.2. Ecosystem Services Related to Agriculture

Groundwater management and flood control are part of the District’s mission. In addition to groundwater recharge and flood control, an additional five services commonly associated with agricultural production were identified. Ecosystem service values provided by agriculture in Santa Clara County include flood control, groundwater recharge, water quality, pollination, habitat, biodiversity and nitrogen regulation.

Flood control. Agriculture can provide a natural buffer for variation in seasonal water flows and rainfall. Land management practices up and downstream affect runoff, drainage and the frequency of flood events. In some areas agriculture can be managed for both crop production and as a seasonal floodplain. Agriculture typically has a lower cost for a given level of flood risk than residential and commercial development.

Groundwater recharge. Deep percolation from irrigation and precipitation will result from some portion of applied water in excess of consumptive use. This proportion depends on field soil characteristics, slope, crop type and irrigation practices.

Water quality. Surface runoff and deep percolation of water from irrigation and precipitation on agricultural land can increase or decrease water quality. Excessive nitrogen application can lead to significantly decreased water quality. Less intensive agriculture such as rangeland can provide a natural filter for water.

Pollination. Wild pollinator populations have recently been on steady decline in California. Agriculture provides natural habitat for pollinators.

Habitat. Conversion from native vegetation to agriculture can destroy habitat for some species. However species such as the Swainson’s Hawk and other predatory birds benefit from hunting conditions on open fields.

Biodiversity. A diverse crop mix and rotation system functions as a natural break for pest and disease cycles. It also provides flexibility for producers to respond to changes in agricultural prices and import and export market conditions.

Nitrogen regulation. Excessive nutrient runoff is a primary cause of eutrophication of surface water. Agriculture is a primary contributor to this problem in many regions, although rotation systems and other field management decisions can be used to manage nitrogen application and reduce runoff.

Agriculture creates a unique ecosystem that benefits from and creates services at the same time it provides many disservices. The cost of ecosystem disservices from agriculture should not be understated. For example in the Llagas Subbasin, the rate of domestic well contamination above the nitrate MCL is rather high, and the primary cause is fertilizers used in agriculture followed by septic tanks. This analysis focuses on the value of ecosystem services, but careful attention should be paid to tradeoffs between the benefits described and potential costs along other dimensions.

B.3. Meta-Analysis of Ecosystem Service Value

Despite the fact that measuring and valuing ecosystem services from agriculture is a new field of research many studies have been able to produce quantitative estimates of service levels and their associated values. Several dozen studies were reviewed and 22 were identified as relevant for Santa Clara County. From these, 4 studies
were identified for use in the meta-analysis. The decision to include the study in the meta-analysis was based on three criteria:

- The study estimates some or all of the 7 ecosystem service values for agriculture
- The study used data from a region with a large agriculture-urban interface similar to that in Santa Clara County.
- The study was peer-reviewed or part of a public report that was based on peer-reviewed publications.

Studies included in the meta-analysis include Chan et al. (2006), Sandhu et al. (2008), Porter et al. (2009) and Costanza et al. (1997).

Chan et al. (2006) represents the work most relevant to Santa Clara County. The authors model the level of six different ecosystem services including carbon storage, flood control, forage production, outdoor recreation, crop pollination and water provision for the Central Coast region of California. The geographic scope of their analysis includes parts of Santa Clara County. Their analysis relies on previous estimates of the value of specific ecosystem services which they incorporate into a spatial economic-ecologic model of the Central Coast region. They are particularly interested in examining the spatial correlation between various types of services. Spatial correlation between ecosystem services is not relevant for this analysis but the values used in their study are applicable to the Central Coast region including portions of Santa Clara County.

Sandhu et al. (2008) design an experimental approach to measure the economic value of ecosystem services under conventional and organic arable systems in the Canterbury region of New Zealand. This region of New Zealand lacks the level of agriculture-urban interface found in Santa Clara County, however the methods and results in this study are informative for aggregate ecosystem service value estimates. The authors estimate the value of all ecosystem services provided by conventional and organic agriculture and this includes the seven services identified as relevant for Santa Clara. Some of the services they value include biological pest control, soil formation, mineralization of plant nutrients, pollination, services provided by shrubs/hedges, hydrological flow, aesthetics, carbon sequestration, nitrogen fixation and soil fertility. The authors find that the total value of all ecosystem services ranges between $651 and $7,862 per acre per year for organic fields and $514 to $5,898 per acre per year for conventional fields. This study is used to provide a bound on the range of the value of ecosystem services in Santa Clara County.

Porter et al. (2009) estimate the value of ecosystem services produced by an experimental organic agro-ecosystem in Denmark that simultaneously produces food, fodder and bio-energy. They use an experimental design approach similar to that used by Sandhu et al. (2008). The authors focus on identifying non-market benefits related to ecosystem services provided by agriculture, in contrast to Sandhu et al. who focused on total benefits (market plus non-market values). They estimate the value of non-market ecosystem services to range from $196–$372 per acre per year, depending on the crop and management practices.

Costanza et al. (1997) estimate the total value of global ecosystem services using various methods. The data in the study are not specific to Santa Clara County, however the authors provide defensible estimates of a range of services related to agriculture and these estimates are used to validate the estimates from the studies discussed above. In some cases the values in Costanza et al. (1997) are used to provide upper and lower bounds for estimates from other studies.

B.3.1. Summary of Meta-Analysis Results

Key ecosystem services that would be affected by changes in the acreage of irrigated agriculture in Santa Clara County are summarized in Table B1. Values vary by service type from negative (ecosystem disservices) to over $400 per acre. The two areas of particular interest for this study include groundwater recharge and flood control.
Table B1 summarizes total ecosystem service values. Flood control total ecosystem service values are between $42 and $86 per acre. The value of flood control ecosystem services is typically estimated using an avoided cost approach. In the avoided cost framework the estimated value of an agricultural acre for flood control benefits is based on the change in risk and additional cost of flood events if the land were converted to urban use. These values are based on results from analysis by Porter et al. (2009), described above, and validated with results from Costanza et al. (1997). Values in Santa Clara County are likely to be higher given the high-value urban land in North County, and significant agriculture-urban interface in South County.

Groundwater recharge total ecosystem service values are between $22 and $44 per acre. Groundwater recharge benefits are estimated using a soil-water balance approach and include the benefits from irrigation water and precipitation deep percolation. Irrigation and precipitation in excess of consumptive use goes to soil capacity, surface runoff, or deep percolation. Studies reviewed for the meta-analysis typically make location specific adjustments for the proportion of soil capacity and surface runoff in order to estimate the amount of groundwater recharge provided by an average acre. The meta-analysis relies on results by Sandhu et al. (2008) and Costanza et al. (1997), described above. This estimate is a lower bound and is further refined in the following sections.

<table>
<thead>
<tr>
<th>Service</th>
<th>Total Value ($/ac)</th>
<th>Summary Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flood Control</td>
<td>$42 – $86</td>
<td>Santa Clara County is likely at or above the high end of this range due to North County flood control requirements.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>$22 – $44</td>
<td>This value represents the average for direct recharge from irrigation and precipitation. Santa Clara County has a higher value and this estimate is further refined.</td>
</tr>
<tr>
<td>Recharge</td>
<td></td>
<td>Value represents an average, range varies from positive to negative depending on the crop.</td>
</tr>
<tr>
<td>Water Quality</td>
<td>$27</td>
<td>None.</td>
</tr>
<tr>
<td>Pollination</td>
<td>$19 – $64</td>
<td>Estimates are both crop and species-specific. Excluded from this analysis.</td>
</tr>
<tr>
<td>Habitat</td>
<td>Varies</td>
<td>None.</td>
</tr>
<tr>
<td>Biodiversity</td>
<td>$31</td>
<td>None.</td>
</tr>
<tr>
<td>Nitrogen Regulation</td>
<td>$0 – $433</td>
<td>Estimates are crop-specific and can be negative in some cases.</td>
</tr>
</tbody>
</table>

Table Notes: Compiled as part of a meta-analysis using estimates from Costanza et al. (1997), Sandhu et al. (2008), Porter et al. (2009), and Chan et al. (2009).

Many of the studies used for this meta-analysis break-down the ecosystem service values into market and non-market components. Market values include the avoided cost of increased risk and deep percolation of groundwater from irrigation and precipitation for flood control and groundwater recharge, respectively. Non-market values for flood control include upstream and downstream effects of changes in land use that change the frequency of flood events. Non-market values for groundwater recharge include factors such as the effects of field-specific management decisions on the proportion of irrigation and precipitation that results in deep percolation. A weighted average over all studies reviewed shows that non-market and market value are approximately 67 and 33 percent of the total value on average, respectively.

Ecosystem service values are location and crop-specific. The values reported in Table B1 should be interpreted as average representative values of an average acre of agricultural land. More refined estimates would require more detailed analysis and data collection for Santa Clara County.

The following section includes suggestions for a county-specific analysis and provides an estimate of the value of groundwater recharge.
B.4. Santa Clara County Framework

While a full empirical measurement of benefits of groundwater recharge and flood control from agricultural production in Santa Clara County is beyond the scope of this study, and definitely beyond the current empirical database, the following discussion of how to approach such a measurement will be useful in applying the meta-analysis summarized in the previous section.

B.4.1. Flood Control

There are two broad approaches to characterize flood control; (i) it can be characterized as dispersion on a floodplain, or (ii) channelization between levees. Economic analysis of flood control increasingly reinforces the conclusion that channeling floods through levees changes their location but that ultimately both the water and the energy have to be dissipated by a diffusion process. Increasingly the high fiscal and environmental cost of building improved levees has caused flood control engineers to reconsider the use of floodplains as a major part of flood control. Wetlands and agricultural land can provide a valuable ecosystem service to support flood control.

Consider Yolo and Sacramento County as a case study of the interaction between agriculture and flood control. Sacramento River flood control is achieved through a combination of levees and floodplains. In particular, the Yolo Bypass floodplain was designed to reroute Sacramento River water around the greater Sacramento urban area. The establishment of irrigated agriculture and flood easements throughout the floodplain has ensured a functioning bypass. Field preparation by growers during the spring and summer removes debris and vegetation from the bypass, thereby ensuring that potential flooding stays within the desired area in the following season. This is a non-market flood control ecosystem service value provided by agricultural lands in the Yolo Bypass.

The main difficulty in using agricultural land for floodplains in Santa Clara County is that there are limited opportunities in North County due to the limited amount of agricultural land, particularly on the valley floor. The areas of agriculture able to accommodate periodic flooding are concentrated in South County, specifically the Coyote Valley and Llagas sub-basins. A quantitative assessment of benefits of maintaining the land in the Coyote Valley and Llagas sub-basins would require careful analysis of existing flood risk areas and their associated watersheds. This information can then be used to assess target areas for purchase of flood easements and, in turn, value the associated flood control ecosystem service in Santa Clara County.

B.4.2. Groundwater Recharge

Field management decisions control the proportion of irrigation and precipitation for evapotranspiration, surface runoff, and groundwater recharge. Studies including Schilling et al. (2010) have shown that land converted from native vegetation to annual crops can increase groundwater recharge. Irrigated agriculture provides groundwater recharge from two key sources:

- Deep percolation of water applied for crop irrigation.
- Deep percolation during times when precipitation exceeds evapotranspiration.

This analysis considers a set of calculations to assess a realistic range from natural recharge in the agricultural areas in Santa Clara County. The analysis combines seasonal values of evapotranspiration, applied water requirements, total irrigated acres by crop, and irrigation efficiency in Santa Clara County. Land use data are from the Santa Clara Valley Water District Agricultural Production Model, prepared under a separate Task in this project, and water data are compiled from the California Department of Water Resources reports for Santa Clara County. Table B2 summarizes Santa Clara water use data for 10 key crop groups.
Table B2. Land and Water Use Summary Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Units</th>
<th>Alfalfa</th>
<th>Fruit and Nuts</th>
<th>Field Crops</th>
<th>Processing Tomatoes</th>
<th>Fresh Tomatoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>ac</td>
<td>378</td>
<td>1,154</td>
<td>833</td>
<td>1,035</td>
<td>759</td>
</tr>
<tr>
<td>Applied Water</td>
<td>af/ac</td>
<td>3.35</td>
<td>2.82</td>
<td>1.83</td>
<td>2.25</td>
<td>1.88</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>af/ac</td>
<td>3.40</td>
<td>2.90</td>
<td>2.60</td>
<td>2.00</td>
<td>1.60</td>
</tr>
<tr>
<td>Effective Precipitation</td>
<td>af/ac</td>
<td>0.65</td>
<td>0.62</td>
<td>1.13</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Evapotranspiration of</td>
<td>af/ac</td>
<td>2.75</td>
<td>2.29</td>
<td>1.47</td>
<td>1.80</td>
<td>1.50</td>
</tr>
<tr>
<td>Applied Water</td>
<td>%</td>
<td>0.82</td>
<td>0.81</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Units</th>
<th>Pasture</th>
<th>Vegetables</th>
<th>Cucurbits</th>
<th>Onions and Garlic</th>
<th>Grapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage</td>
<td>ac</td>
<td>468</td>
<td>7,995</td>
<td>970</td>
<td>538</td>
<td>1,540</td>
</tr>
<tr>
<td>Applied Water</td>
<td>af/ac</td>
<td>3.70</td>
<td>2.50</td>
<td>1.33</td>
<td>2.88</td>
<td>1.29</td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>af/ac</td>
<td>3.50</td>
<td>2.47</td>
<td>1.10</td>
<td>2.50</td>
<td>1.60</td>
</tr>
<tr>
<td>Effective Precipitation</td>
<td>af/ac</td>
<td>0.50</td>
<td>0.47</td>
<td>0.04</td>
<td>0.20</td>
<td>0.57</td>
</tr>
<tr>
<td>Evapotranspiration of Applied Water</td>
<td>af/ac</td>
<td>3.00</td>
<td>2.00</td>
<td>1.06</td>
<td>2.30</td>
<td>1.03</td>
</tr>
<tr>
<td>Consumed Fraction</td>
<td>%</td>
<td>0.81</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Source: Land use data compiled by authors, water use data from CA Department of Water Resources.

In addition to applied irrigation water, agricultural land may provide recharge through deep percolation when precipitation exceeds evapotranspiration. Table B3 summarizes average monthly rainfall in inches using a 1990-2003 average from the Gilroy (D10 3417 00) weather station. Rainfall data are available for a longer historical time series, 1990 – 2003 are selected as a representative subset of years covering dry years in the early 1990’s in addition to wet and average water years.

Table B3. 1990-2003 Average Monthly Rainfall at Gilroy, California (inches)

<table>
<thead>
<tr>
<th>Precipitation (in)</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.819</td>
<td>2.068</td>
<td>3.336</td>
<td>5.491</td>
<td>4.266</td>
<td>2.981</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (in)</td>
<td>0.906</td>
<td>0.756</td>
<td>0.096</td>
<td>0.008</td>
<td>0.064</td>
</tr>
</tbody>
</table>

These data can be used to apply a soil-water balance approach to estimate the net recharge to Santa Clara County groundwater provided by agriculture. Agriculture for this analysis includes 15,760 acres of irrigated land detailed in table B2 plus an additional 3,650 acres of dry farmed hay grain for a total of 19,410 acres. Rangeland acreage (just over 210,000 acres) are excluded from this analysis. Deep percolation can be defined as:

- Deep percolation = precipitation + irrigation - soil storage - surface runoff - evapotranspiration.

This analysis considers a monthly time-step for the above equation. Surface runoff is assumed constant at zero for all months. In practice a limited amount of surface runoff is likely and this would decrease groundwater recharge value estimates provided below. Monthly precipitation is from Table B3 and converted to acre feet per acre. Monthly evapotranspiration for each crop is calculated by proportionally allocating the values reported in
table B2 across the growing season for each crop. Monthly evapotranspiration of idle fields (non-growing season for each crop) varies from 0.07 to 1.1 inches, using data from Zone 9 (includes most of Santa Clara) estimated by the California Department of Water Resources and the Irrigation Training and Research Center at Cal Poly San Luis Obispo. Growers are assumed to optimize irrigation. During the growing season irrigation water is never applied in excess of evapotranspiration minus precipitation. Change in soil storage each month depends on field capacity for which data are not readily available for use in this analysis. Therefore two scenarios are considered, (i) an upper bound where the soil is assumed always at field capacity, and (ii) a lower scenario where the soil is only at field capacity in the winter and early spring months (December - March). In months where the field is below soil capacity deep percolation is zero.

Table B4 summarizes the results of the analysis. Groundwater recharge is estimated between 10,686 and 13,140 acre-feet per year. This translates into an average 0.55 to 0.68 acre-feet of groundwater recharge provided by an acre of dry farmed hay grain plus irrigated agricultural land in Santa Clara County. The average cost of an acre foot of agricultural water to the District is $246 per acre-foot (as of Fiscal Year 2014) and this is used to value the groundwater recharge. A cost of $246 per acre foot of agricultural water and recharge between 0.55 and 0.68 acre-feet per acre implies a groundwater recharge ecosystem service value between $135.30 and $167.28 per acre per year.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Groundwater recharge (af/year)</th>
<th>Acre-feet per acre per year</th>
<th>Value per af ($/af)</th>
<th>Groundwater Recharge Value ($/ac per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field capacity only in</td>
<td>10,686</td>
<td>0.55</td>
<td>$246</td>
<td>$135.30</td>
</tr>
<tr>
<td>winter months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Always at field capacity</td>
<td>13,140</td>
<td>0.68</td>
<td>$246</td>
<td>$167.28</td>
</tr>
</tbody>
</table>

Note that changes in factors omitted from the analysis such as permeability, field capacity, and storability, as well as the time needed for deep percolation can change the estimated value. However, assumptions may increase or decrease the value and, on balance and when compared to the meta-analysis results, these estimates suggest a positive value for groundwater recharge. These initial calculations suggest that the benefits of groundwater recharge associated with agricultural lands in Santa Clara County groundwater basins offset a portion of the cost of recharging water pumped by the agricultural sector.

B.4.3. Summary

Analysis of flood control and groundwater recharge benefits suggests that opportunities exist to increase the role of agriculture in flood control in Santa Clara County and that the effect of agriculture on recharge in the groundwater basin is significant and appears to justify some of the special treatment that Santa Clara County agriculture receives through the open space credit program. Groundwater benefits may also warrant additional hydrologic analysis in order to refine the analysis in this report, which was calculated using standard parameters applied to the entire county agricultural sector. The District's existing groundwater models are tools that could be used for the hydrologic analysis.

B.5. Conclusion

Ecosystem services are difficult to define and challenging to value. Work continues to develop the scientific methodologies to understand ecosystem processes and the economic approaches to value individual components. With this in mind, this study has presented results of a literature review and meta-analysis based on a comprehensive literature review of ecosystem service valuation studies. Particular attention was paid to groundwater recharge and flood control benefits. Five additional services commonly attributed to agriculture were presented to provide context for groundwater recharge and flood control benefits.
Taking the meta-analysis results for the value of flood control benefits presented in table 4 and the groundwater recharge estimates presented in table 5, the estimated total value of groundwater recharge and flood control ecosystem services provided by agriculture to Santa Clara County is between $177.30 and $253.28 per acre per year.

Note that these values are contingent on a number of assumptions and location specific factors should be factored into specific policy decisions. It is additionally important to consider land use conversion. When analyzing the provision of ecosystem services, it is necessary to consider changes from one type of land use to another. For example, conversion from irrigated agriculture to wetlands or urban development will lead to changes in ecosystem service values.

B.6. Relevant Studies Reviewed

Technical Appendix C: Model Documentation

This technical appendix provides an overview of the economic model developed to analyze the direct economic impacts to growers from changes in the agricultural groundwater charge.

The ability to analyze changes in the groundwater charge under short run and long run conditions requires an economic model of the agricultural economy in Santa Clara County which is able to reflect the incremental effects of changes in water costs. Changes in local economic activity occur gradually as costs and benefits change, so there is a corresponding difference between short run and long run analysis. Grower response to increasing groundwater charges will be a smooth adjustment, rather than a sudden shift out of production.

The analysis relies on an economic evaluation framework known as a calibrated optimization model. The model calibrates to an observed set of base years using observed grower decisions and economic data. The framework used to analyze changes in the agricultural groundwater charge is grounded in observed data and economic principles and represents the incremental adjustments by growers in response to changing production costs.

C.1. Problem Overview

The Open Space Credit essentially functions as a groundwater charge subsidy for agricultural users. The District currently charges agricultural groundwater users between 3 and 6 percent of the corresponding Municipal and Industrial (M&I) rates. The District has requested an economic analysis of the impact of higher groundwater charges on agricultural users in Santa Clara County.

Changes in the cost of irrigation water may alter the crop mix in the short and long run. In addition to impacts on open space, this may have financial implications for the District and Santa Clara County. The District has requested analysis of two alternative scenarios where agricultural groundwater charges are increased to 10% or 25% of M&I water rates by fiscal year 2024. The scenarios include a 10 year phase in period starting in fiscal year 2015 and are compared relative to projected baseline agricultural groundwater charges.

Economic analysis of increased agricultural groundwater charges consists of three key components, (i) grower response within the region through a shift in crop mix, (ii) grower response through an increase in land falling, and (iii) increased costs of production for all growers.

C.2. Santa Clara County Agricultural Model Objectives

The agricultural economic model developed for this study will be referred to as the Santa Clara County model. The model is used to estimate changes in county agriculture as a result of changes in the District’s groundwater charge. Other factors such as relative crop prices, market conditions, and other input costs are held constant in order to isolate the effect of changes in the groundwater change. The analysis considers direct impacts to growers including input use (i.e., land, labor, water, other supplies), revenue, and costs under three (3) scenarios defined by the District.

The following are considered for the analysis:

- Scenarios considered: Baseline, groundwater charge gradually increased to 10% of M&I over a 10-year horizon, and groundwater charge gradually increased to 25% of M&I over a 10-year horizon.
- Time frames considered: All scenarios are evaluated over a 10 year time frame from fiscal year 2015 to fiscal year 2024.
- The model holds other input costs, crop prices, resource availability, and market conditions constant to isolate the effect of changes in the groundwater charge.
• Relevant impacts include changes in input use, revenues, and costs by crop and region.
• Mushroom farms and nurseries are modeled separately from standard crop production.

The direct economic cost to growers from changes in the agricultural groundwater charge is defined as the difference between the baseline scenario and the 10 percent and 25 percent scenarios, respectively.

The analysis considers direct economic impacts across four dimensions:
• Shifts in the regional crop mix
• The decision to fallow (non-rotational) land
• Increased groundwater cost to all growers
• Cost to mushroom farms and nurseries (treated separate from the model)

The sum of these individual components equals the incremental direct cost to growers at any point in time. The total cost can be calculated by discounting the 10 year stream of costs back to the present plus the infinite future stream beginning in year 11 onward. This analysis only considers the direct cost to growers and does not include upstream and downstream costs to markets that support, and are supported by agriculture.

C.3. Santa Clara County Model Overview

The Santa Clara County model is a regional agricultural production and economic optimization model that simulates the decisions of growers across agricultural land in Santa Clara County. Similar models have been used for numerous policy analyses and impact studies since the 1980's, by agencies including the California Department of Water Resources, United States Fish and Wildlife Service, United States Army Corps of Engineers, and United States Bureau of Reclamation. This model framework has additionally been applied for a range of water districts and counties and is currently being used to evaluate alternatives in the Bay Delta Conservation Plan.

The model assumes that growers attempt to maximize profits\(^2\) by choosing total input use (for example, total crop acres), but are subject to constraints and conditions on resource availability, land suitability, input costs, and markets. Input use intensity (for example, applied water per acre) is held constant in the Santa Clara County model. Growers face competitive markets, where no one grower can influence crop prices. The competitive market is simulated by maximizing grower profits (sometimes referred to as producer surplus) subject to the following relationships and constraints:
• Leontief (fixed proportion) production functions for every crop in every region.
 • A production function is a mathematical relationship that translates input use (land, labor, water, other supplies) into agricultural production (yield).
 • The Leontief production function is a specification that holds input use intensity constant. In other words, labor, water, and other supply input use per acre is held constant across all scenarios.
 • There are 4 inputs including land, labor, water, and other supplies.

\(^2\) Profit is defined as returns to land, management, and risk. \(\text{Profit} = \text{Crop revenue (price \times yield \times acres, by crop and region)} - \text{water costs} - \text{other production costs (excluding land)}\)
- Parameters are calculated using a combination of observed grower decisions and economic data and the method of Positive Mathematical Programming, discussed in the following section.

- Incremental land cost functions, estimated using the method of Positive Mathematical Programming. These cost functions capture the increasing cost of bringing additional land into production, by using observed grower land use and acreage response elasticities which relate change in acreage to changes in expected returns and other information.

- Groundwater pumping cost including depth to groundwater, energy cost, and District groundwater charge for each region.

- Resource constraints on land, labor, water, and other supplies availability.

- Agronomic and economic constraints on perennial crop acreage changes and crop rotations.

The model chooses the optimal values of land, water, labor, and other input use subject to the above constraints and definitions. For this project, the model is then used to compare the response of agriculture in Santa Clara County to potential changes in the agricultural groundwater charge. The model framework can estimate grower response to a range of additional policies including, for example, changes in crop prices, water availability, energy costs, or other input costs and availability.

C.3.1. Model Calibration

The Santa Clara County model self-calibrates using a three-step procedure based on the method of Positive Mathematical Programming (PMP) and the assumption that farmers behave as profit-maximizing agents. The method of PMP has been used by economists since the early 1980’s and was formalized in a publication by Howitt (1995). The essence of PMP can be described as follows. In a traditional optimization model profit-maximizing growers would simply allocate all land, up until resource constraints become binding, to the most valuable crop(s). In practice, regions such as Santa Clara County exhibit a diverse mix of crops, some of which are relatively low-value. PMP incorporates information on the marginal production conditions that farmers face, allowing the model to calibrate to a base year of observed input use and output. Marginal conditions may include inter-temporal effects of crop rotation, proximity to processing facilities, management skills, farm-level effects such as risk and input smoothing, and variation in soil and other field conditions.

PMP translates unobservable marginal conditions using observed grower decisions and economic data in the form of acreage response elasticities. This information is represented as a crop and region specific cost function which allows the model to calibrate to a base year of observed input use and output.

PMP, as it is applied to the Santa Clara County model, is fundamentally a three step procedure, although each step includes a number of calculations and model checks.

1. The first step in PMP is a linear program of farm profit maximization subject to resource constraints, with calibration constraints set to observed values of land use. The resource and calibration constraints contain information on the value of additional resources (e.g. land and water) and the marginal opportunity cost of restricting valuable activities in order to bring what appear to be less-profitable activities into the optimal solution.

2. The information from the calibration and resource constraints is used in a second step to calibrate exponential PMP land cost functions and Leontief production functions.

3. The third step is a non-linear farm profit maximization program that includes the calibrated PMP cost functions and Leontief production functions. The calibrated cost functions guarantee that the program calibrate to observed data (in inputs and output) without restrictive calibration constraints.
4. Policy analysis follows in subsequent model scenarios by changing relevant parameters such as the groundwater charge, input costs, output prices, or resource constraints.

C.3.2. Model Validation

The Santa Clara County model, and calibration by PMP, uses a sequential testing process for model validation, diagnosing problems, and debugging the model. At each stage in the model there is a corresponding model check.

C.4. Santa Clara County Model Components

The following section reviews the key components and data in the Santa Clara model and how they are incorporated.

C.4.1. Crops

The model includes 18 representative crop groups, excluding mushroom farms and nurseries which are treated separately. Crop groups are the same across all model regions. Each group can represent a number of individual crops, but most are dominated by a single crop in Santa Clara County. Harvested acreage represents acreage of all crops within each group, and production costs and returns are represented by a single proxy crop. Proxy crops for each group were chosen based on standard criteria applied to similar economic models:

- A detailed crop budget was available.
- It is the largest acreage within the group.
- Its water requirement is representative of all crops in the group.
- Gross and net returns are representative of all crops in the group.

The relative importance of the selection criteria varies by crop group. Table C1 summarizes the crop groups and corresponding proxy crop.
Table C1. Santa Clara County Model Crop Groups

<table>
<thead>
<tr>
<th>Model Definition</th>
<th>Proxy Crop</th>
<th>Other Crops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Alfalfa Hay</td>
<td></td>
</tr>
<tr>
<td>Apricot</td>
<td>Apricot</td>
<td>Lima Beans</td>
</tr>
<tr>
<td>Beans</td>
<td>Dry Beans</td>
<td></td>
</tr>
<tr>
<td>Cherries</td>
<td>Cherries</td>
<td>Misc. Citrus</td>
</tr>
<tr>
<td>Citrus</td>
<td>Olives</td>
<td></td>
</tr>
<tr>
<td>Cucurbitis</td>
<td>Summer Squash</td>
<td>Misc. Melons</td>
</tr>
<tr>
<td>Fresh Tomatoes</td>
<td>Fresh Tomatoes</td>
<td></td>
</tr>
<tr>
<td>Garlic</td>
<td>Garlic</td>
<td></td>
</tr>
<tr>
<td>Grain</td>
<td>Hay Grain</td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td>Head</td>
<td>Leaf, Misc. Greens</td>
</tr>
<tr>
<td>Onions</td>
<td>Dry Onions</td>
<td>Celery, Other Vegetables</td>
</tr>
<tr>
<td>Other Truck</td>
<td>Bell Peppers</td>
<td></td>
</tr>
<tr>
<td>Pasture</td>
<td>Irrigated Pasture</td>
<td></td>
</tr>
<tr>
<td>Processing Tomatoes</td>
<td>Processing Tomatoes</td>
<td></td>
</tr>
<tr>
<td>Berries</td>
<td>Strawberries</td>
<td>Misc. Berries</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>Sweet Corn</td>
<td></td>
</tr>
<tr>
<td>Vines</td>
<td>Wine Grapes</td>
<td></td>
</tr>
<tr>
<td>Walnuts</td>
<td>Walnuts</td>
<td></td>
</tr>
</tbody>
</table>

C.4.2. Geographic Regions

The Santa Clara County model has 3 geographic regions, including one in North County and two in South County. Regions are defined based on existing groundwater subbasins and management areas across the county – the Santa Clara Plain portion of the Santa Clara Subbasin, the Coyote Valley portion of the Santa Clara Subbasin, and the Llagas Subbasin.

Santa Clara Plain

The Santa Clara Plain is a large portion of the Santa Clara Subbasin and extends from the northern border of Santa Clara County to the Coyote Narrows. Total surface area, according the District's 2010 Urban Water Management Plan, is 225 square miles. The majority of streams and recharge facilities are located in this part of the county. Santa Clara Plain includes North County agriculture, which represents a small proportion of total county acreage.

Coyote Valley

The Coyote Valley is a portion of the Santa Clara Subbasin which is hydraulically connected to the Santa Clara Plain, but treated as a separate unit by the District. The total surface area is 15 square miles. The Coyote Valley includes agriculture and land between San Jose and Morgan Hill.

Llagas Subbasin

The Llagas Subbasin lies to the south of Coyote Valley, extending for 15 miles. Agriculture in the basin includes high value and productive row crop land in the Morgan Hill, San Martin, and Gilroy areas.

Figure C1 illustrates the three geographical regions in the Santa Clara County model.
C.4.3. Land Use Data

The Santa Clara model calibrates to a base year of observed land use, for each crop and region, based on the 2010 - 2011 county average. The years 2010 and 2011 are representative of average production conditions within the county and represent an ideal set of base years to calibrate against. These years included above average agricultural prices and normal rainfall conditions.

Land use data are compiled from three sources:

- Santa Clara County Agricultural Commissioner Annual Crop Reports
- Santa Clara County Pesticide Use Reports
- United States Department of Agriculture National Agricultural Statistics Service (NASS) Cropland Data Layers (GIS)

Agricultural Commissioner reports provide the most consistent source of land use information and are used as the benchmark standard in the model. The Agricultural Commissioner reports only include county-wide total crop acreages, therefore additional data are required to disaggregate land use for each of the subbasins.

Pesticide Use Reports are used to proportionally allocate crop acreage between each of the three groundwater areas. Pesticide Use Reports are subject to reporting and entry error in addition to double-counting error. These
reports are consequently only used to disaggregate the total proportion of crops across the three groundwater areas. Absolute acreage is based on the Agricultural Commissioner reports.

NASS GIS layers are used to verify total crop acreage in each of the three groundwater areas. NASS uses satellite data and a classification algorithm in order to identify crop type (and other land use) down to a scale of 50 meters. The algorithm is very effective for regions where there is a relatively uniform crop mix, such as corn and soybeans in the Midwest, but is subject to classification error in regions such as California. As with the Pesticide Use Reports these data are only used to disaggregate land use by region.

Table C2 summarizes total harvested acreage in each of the groundwater areas, 2010 and 2011 average.

Table C2. Santa Clara County Model Crop Acreage, 2010-2011 Average

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Santa Clara Plain</th>
<th>Coyote Valley</th>
<th>Llagas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>286</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Apricot</td>
<td>105</td>
<td>41</td>
<td>76</td>
</tr>
<tr>
<td>Beans</td>
<td>6</td>
<td>390</td>
<td>437</td>
</tr>
<tr>
<td>Cherries</td>
<td>0</td>
<td>199</td>
<td>336</td>
</tr>
<tr>
<td>Citrus</td>
<td>118</td>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>Cucurbits</td>
<td>0</td>
<td>564</td>
<td>404</td>
</tr>
<tr>
<td>Fresh Tomatoes</td>
<td>0</td>
<td>26</td>
<td>732</td>
</tr>
<tr>
<td>Garlic</td>
<td>0</td>
<td>54</td>
<td>245</td>
</tr>
<tr>
<td>Grain</td>
<td>1,155</td>
<td>579</td>
<td>1,916</td>
</tr>
<tr>
<td>Lettuce</td>
<td>15</td>
<td>530</td>
<td>1,908</td>
</tr>
<tr>
<td>Onions</td>
<td>0</td>
<td>12</td>
<td>227</td>
</tr>
<tr>
<td>Other Truck</td>
<td>44</td>
<td>628</td>
<td>3,610</td>
</tr>
<tr>
<td>Pasture</td>
<td>85</td>
<td>22</td>
<td>361</td>
</tr>
<tr>
<td>Processing Tomatoes</td>
<td>0</td>
<td>21</td>
<td>1,014</td>
</tr>
<tr>
<td>Strawberries</td>
<td>0</td>
<td>19</td>
<td>76</td>
</tr>
<tr>
<td>Sweet Corn</td>
<td>21</td>
<td>392</td>
<td>753</td>
</tr>
<tr>
<td>Vines</td>
<td>657</td>
<td>324</td>
<td>559</td>
</tr>
<tr>
<td>Walnuts</td>
<td>29</td>
<td>24</td>
<td>111</td>
</tr>
</tbody>
</table>

C.4.4. Acreage Response Elasticities

An elasticity is the percent change in a variable, per unit of percent change in another variable or parameter. Acreage response elasticity is one component of supply response. It is the percentage change in acreage of a crop from a one percent change in that crop’s price. Long run acreage response elasticities are used for this analysis. Acreage response elasticities are compiled from a study by economists at UC Davis using historical California data (Russo et al. 2012).

Elasticities are likely to vary between regions due to different production conditions. The calibration routine used for the Santa Clara County model allows individual region elasticities to vary from the aggregate measure. This more accurately reflects regional production conditions and allows the model to better reflect regional differences.

C.4.5. Crop Prices and Yields

Crop prices in the model correspond to 2010-2011 average prices received by growers in Santa Clara County. Data are compiled for each of the proxy crops and farm-gate prices are the same across all geographic regions.
Crop yields for each crop group in the Santa Clara model correspond to the proxy crops and are based on best management practices. Yields represent average expected yields under best management practices. Note that crop budgets, discussed in a subsequent section, also reflect best management practices. Thus, crop yields may be slightly higher than those estimated by calculating county averages, but are more consistent with the production costs.

Crop yield data are compiled from the University of California Cooperative Extension (UCCE) production cost budgets prepared by extension specialists and economists at the University of California at Davis (UC Davis). These data are validated using the Agricultural Commissioner Crop Reports, which include estimated county-average yields.

C.4.6. Other Input Costs

Input costs are derived from respective University of California Cooperative Extension (UCCE) crop budgets. These budgets are compiled for various years for each of the proxy crops. The most recent budget is used and dollar values are indexed to 2012 using the Gross Domestic Product (GDP) Implicit Price Deflator.

Confidential budgets provided by the Santa Clara County Farm Bureau were used to validate and, when necessary, adjust UCCE budgets to better reflect conditions in Santa Clara County.

C.4.7. Water Use, Availability and Costs

Irrigation water is available from three sources: surface water, recycled water, and groundwater. The primary source for agricultural irrigation water is groundwater. Water availability is reported in the District's 2010 Urban Water Management Plan and District reports available online.

Applied water per acre requirements for crops in the model are derived from California Department of Water Resources estimates. DWR estimates are based on geographic regions known as Detailed Analysis Units (DAU) and those regions in Santa Clara County are used for the model. Additionally, DWR data are checked against crop water requirements reported in the UCCE crop budgets.

The key source of irrigation water is groundwater pumping. Groundwater pumping costs, excluding the agricultural groundwater charge, are broken out into fixed, energy, and operations and maintenance (O&M) components in the model. Energy and O&M components are variable and the fixed component represents the amortized fixed cost of the well and pump over a standard useful life.

Pumping costs are calculated as two components, the fixed cost per acre foot based on typical well designs and costs within the county, plus the variable cost per acre foot. The variable cost per acre foot is O&M plus energy costs based on average total dynamic lift within the region.

Energy costs depend on the price of electricity. Energy cost is 21 cents per kilowatt-hour, which is an average of PG&E’s AG-1B and AG-4B rates. Overall well efficiency is assumed to be 70 percent.

The total dynamic lift (TDL) for each region is in feet, and includes both static lift and additional dynamic drawdown when pumps are operating. Base groundwater depth (static pumping lift) estimates are from data provided by the District which are converted to dynamic lift using the standard engineering formula.

C.5. Using the Model

Data and model organization are relatively streamlined given the complexity underlying the approach. The modeler needs only three files to run the model, although some expertise is required to adjust relevant parameters for policy simulations. The following three files are required:

- Excel workbook data input file
- Santa Clara County program file
• A small text file containing solver options

As with any model, some experience is required to understand the nuances of the modeling approach. The Santa Clara County model is written in the General Algebraic Modeling Software (GAMS) language. This is a standard language for economic models because the language is well-suited for the problem structure and the solvers are more robust than other competing model packages.

C.5.1. Data Input File

This is an Excel workbook that contains all of the data tables required for the model. Data are stored in a series of tabs where each tab corresponds to a specific input or parameter table. Some scalar parameters are incorporated into the model file itself rather than the data input file. Features of the data input file include the following.

• Disaggregated cost input data are stored on a separate tab in the data file. The workbook automatically aggregates the data, by region, input, and crop, for use in the Santa Clara County model.

• The input data file is automatically imported into the program file using the built-in GAMS program “xls2gms.” Thus the modeler can edit data within the excel file and it will be automatically updated in the model code.

• The data input file should be saved as “.xls,”

C.5.2. Model Program File

The program file (.gms) contains all of the model code. This includes a routine to automatically update input data, the three-step PMP calibration routine, and a series of models used for policy simulation. Simple or parameterized data input changes can also be made within the program file. The program file contains numerous comments and references. Also, calculations are included to double-check other calculations and to display intermediate results to assist model development.

C.5.3. Solver Options File

The solver options file (.op2) contains user-specified commands and definitions for the CONOPT-3 solver. The modeler may need to alter this file to change memory allocation, convergence tolerance, iterations, and to diagnose numerical convergence issues.

C.5.4. Output File

The Santa Clara program file will output a series of summary tables directly into Excel workbooks. It is generally up to the modeler to identify relevant parameters to export. For this analysis, changes in crop revenues, water use, and acreage were exported.

C.6. Relevant Studies Reviewed
