

Valley Water System # 4310027

Report for: Penitencia, Rinconada, Santa Teresa Water Treatment Plants

Start: 11/1/2020 End: 11/30/2020

Primary Standards - Mandatory Health-Related Standards

	Units	MCL	DLR	PWTP Influent	PWTP Treated	RWTP Influent	RWTP Treated	STWTP Influent	STWTF Treated
Aluminum	ug/L	1000	50	56	ND	58	ND	57	ND
Antimony	ug/L	6	6	ND	ND	ND	ND	ND	ND
Arsenic	ug/L	10	2	2	ND	3	ND	3	ND
Barium	ug/L	1000	100	ND	ND	ND	ND	ND	ND
Beryllium	ug/L	4	1	ND	ND	ND	ND	ND	ND
Bromate	ug/L	10	1	NT	3	NT	NT	NT	ND
Cadmium	ug/L	5	1	ND	ND	ND	ND	ND	ND
Chlorine Total by DPD	mg/L	NS	NS	NT	3.5	NT	2.5	NT	3.3
Chromium	ug/L	50	10	ND	ND	ND	ND	ND	ND
Fluoride	mg/L	2	0.1	ND	0.7	ND	ND	ND	0.6
Mercury	ug/L	2	1	ND	ND	ND	ND	ND	ND
Nickel	ug/L	100	10	ND	ND	ND	ND	ND	ND
Nitrate as Nitrogen	mg/L	10	0.4	ND	ND	ND	ND	ND	ND
Nitrite as Nitrogen	mg/L	1	0.4	ND	ND	ND	ND	ND	ND
Perchlorate	ug/L	6	4	ND	ND	ND	ND	ND	ND
Selenium	ug/L	50	5	ND	ND	ND	ND	ND	ND
Thallium	ug/L	2	1	ND	ND	ND	ND	ND	ND
Dibromoacetic Acid	ug/L	NS	1	NT	3.8	NT	3.2	NT	1.5
Dichloroacetic Acid	ug/L	NS	1	NT	1.5	NT	2.4	NT	1.3
Monobromoacetic Acid	ug/L	NS	1	NT	ND	NT	ND	NT	ND
Monochloroacetic Acid	ug/L	NS	2	NT	ND	NT	ND	NT	ND
Trichloroacetic Acid	ug/L	NS	1	NT	1.3	NT	2.0	NT	ND
Total Haloacetic Acids (5)	, ug/L	60	NS	NT	7	NT	8	NT	3
Bromodichloromethane	ug/L	NS	1	NT	6.0	NT	13.3	NT	14.1
Bromoform	ug/L	NS	1	NT	6.5	NT	5.3	NT	7.8
Chloroform	ug/L	NS	. 1	NT	4.0	NT	5.8	NT	6.3
Dibromochloromethane	ug/L	NS	1	NT	10.1	NT	16.5	NT	17.3
Total Trihalomethanes	ug/L	80	NS	NT	27	NT	41	NT	46
Heterotrophic Plate Count	CFU/mL	NS	NS	17183	<1	1156	4	4892	<1

Secondary Standards - Aesthetic Standards

The second secon	Units	MCL	DLR	PWTP Influent	PWTP Treated	RWTP Influent	RWTP Treated	STWTP Influent	STWTP Treated
Apparent Color	Color Units	15	NS	20	<2.5	12	<2.5	18	<2.5
Chloride	mg/L	500	NS	72	75	55	56	56	54
Conductivity	umhos/cm	1600	NS	510	567	463	530	465	518
Copper	ug/L	1000	50	ND	ND	ND	ND	ND	ND
Iron	ug/L	300	100	ND	ND	ND	ND	ND	ND
Manganese	ug/L	50	20	22	ND	62	ND	68	ND
pH	pH units	NS	NS	8.2	7.8	7.8	7.7	7.8	7.8
Silver	ug/L	100	10	ND	ND	ND	ND	ND	ND
Sulfate	mg/L	500	0.5	33.6	51.0	37.0	NT	37.4	NT
Total Dissolved Solids at 180C	mg/L	1000	NS	270	310	252	292	254	284

Valley Water System # 4310027

Report for: Penitencia, Rinconada, Santa Teresa Water Treatment Plants

Valley Water

Start: 11/1/2020 End: 11/30/2020

Turbidity	NTU	5	0.1	2.67	ND	2.27	ND	2.96	ND
Zinc	ug/L	5000	50	ND	ND	ND	ND	ND	ND

Additional Constituents Analyzed

	Units	MCL	DLR	PWTP Influent	PWTP Treated	RWTP Influent	RWTP Treated	STWTP Influent	STWTP Treated
Boron	ug/L	NS	100	105	102	114	119	121	117
Bromide	mg/L	NS	NS	0.22	0.13	0.19	<0.1	0.19	<0.1
Calcium	mg/L	NS	NS	14.5	14.5	20.9	22.7	22.0	22.1
Chlorate	ug/L	NS	20	NT	147	NT	93	NT	167
Hexavalent Chromium	ug/L	NS	1	ND	ND	ND	ND	ND	ND
Lead	ug/L	NS	5	ND	ND	ND	ND	ND	ND
Magnesium	mg/L	NS	NS	10.3	10.3	11.2	12.0	11.8	11.7
Phosphate, Ortho (as PO4)	mg/L	NS	NS	NT	1.07	NT	1.09	NT	1.05
Potassium	mg/L	NS	NS	3.1	3.1	2.3	2.4	2.5	2.4
Sodium	mg/L	NS	NS	52	60	32	47	34	57
Temperature	Deg. C	NS	NS	16	17	18	18	18	18
Total Alkalinity (as CaCO3)	mg/L	NS	NS	95	87	99	90	97	96
Total Ammonia Nitrogen	mg/L	NS	NS	<0.1	0.93	<0.1	0.62	< 0.1	0.86
Total Organic Carbon	mg/L	NS	0.3	3.53	1.60	3.57	1.57	3.33	1.80
Vanadium	ug/L	NS	3	ND	ND	ND	ND	ND	ND

MCL = Maximum Contaminant Level

DLR = Detection Limit for Reporting

PWTP = Penitencia Water Treatment Plant

RWTP = Rinconada Water Treatment Plant

STWTP = Santa Teresa Water Treatment Plant

mg/L = milligrams per liter

ug/L = micrograms per liter

Deg. C = Degree Celsius

CFU/ml = colony forming units per milliliter

umhos/cm = micromhos per centimeter NTU = nephelometric turbidity units ND = Not Detected

NT = Not Tested

NS = No Standard

NR = Not Reported

For questions about this report, or for additional water quality information, call (408) 630-2268.

quality information, call (400) 630

Surjit Saini

Laboratory Manager

Laboratory Services Unit

12/10/2020

MONTHLY SUMMARY OF REVISED TOTAL COLIFORM RULE DISTRIBUTION SYSTEM MONITORING (Including triggered source monitoring for system subject to Groundwater Rule)

System Name:		S	System Number:				
Santa Clara Valley Water Di		4310027					
Sampling Period:							
November Month:	Y	'ear:	2020				
		Number Required	Number Collected	Number Total Coliform Positives	Number E.Coli Positives		
1. Routine Samples (see note 1) :		340	363	0	0		
Repeat Samples following samples that are Total Coliforn E.coli NEGATIVE (see notes 10 and 11):	m POSITIVE and		0	0	0		
Repeat Samples following routine samples that are Total and E. coli POSITIVE (see notes 10 and 11):	Coliform POSITIVE		0	0	0		
 Treatment Technique (TT)/MCL Violation Computation for Coliform/E.Coli Positive Samples 	or Total						
a. Totals (sum of columns) :		340	363	0			
 If 40 or more samples are collected in the month, dete samples that are Total Coliform positive. 	ermine percent of						
([total number positive / total number collected] x 100)) :	0.00	%				
c. Did the system trigger a LEVEL 2 Assessment TT?			Ye	s X No			
(See notes 2, 3, 4,5 and 6 If a LEVEL 2 Assessment is triggered, see note 8 below. a LEVEL 1 Assessment TT?	,		Ye	s X No			
(See notes 7 for trigger inf				, NO			
If a LEVEL 1 Assessment is triggered, see note 9 below.	,						
5. Triggered Source Samples per Groundwater Rule (see r	notes 12 and 13)		0	0	0		
Invalidated Samples (note what samples, if any, were invalidated; why they we samples were collected. Attach additional sheets, if necessamples.		norized the i	nvalidation; and	when replacen	nent		
7. Summary Completed By:							
Signature:	Title: Surjit Sair Laboratory			Date: 12/7/20	20		
NOTES AND INSTRUCTIONS:	Laboratory	wanaye					

- Routine samples include:
 - a) Samples required pursuant to 22 CCR Section 64423 and any additional samples required by an approved routine sample siting plan established pursuant to 22 CCR Section 64422
 - b) Extra samples are required for systems collecting less than five routine samples per month that had one or more total coliform positives in previous
 - c) Extra samples for systems with high source water turbidities that are using surface water or groundwater under direct influence of surface water and do not practice filtration in compliance with regulations;
- 2. Note: For a repeat sample following a Total Coliform positive sample, any E.Coli positive repeat (boxed entry) constitutes an MCL violation and requires immediate notification to the Department (22 CCR, Section 64426.1).
- 3. Note: For a repeat sample following a E. Coli positive sample, any Total Coliform positive repeat (boxed entry) constitutes an MCL violation and requires immediate notification to the Department (22 CCR, Section 64426.1).
- 4. Note: Failure to take all required repeat samples following an E. coli positive routine sample (22, CCR, Section 64426.1) constitutes an MCL violation and requires immediat notification to the Department (22 CCR, Section 64426.1).
- 5. Note: Failure to test for E. coli when any repoeat sample tests postive for total coliform (22, CCR, Section 64426.1) constitutes an MCL violation and requires immediate notification to the Department (22 CCR, Section 64426.1).
- 6. Note: Second Level 1 treatment technique trigger in a rolling 12-month period.
- 7. Total coliform Treatment Technique (TT) Violation (Notify Department within 24 hours of MCL violation).
- a. For systems collecting less than 40 samples, if two or more samples are total coliform positive, then the TT is violated and a Level 1 Assessment is required,
- b. For systems collecting 40 or more samples, if more than 5.0 percent of samples collected are total coliform positive, then the TT is violated and a Level 1 Assessment is required.
- 8. Contact the Division as soon as practical to arrange for the division to conduct a Level 2 Assessment of the water system. The water system shall complete a Level 2 Assessment and submit it to the Division within 30 days of learning of the trigger exceedance.
- 9. Conduct a Level 1 Assessment in accordance with as soon as practical that covers the minimum elements (22, CCR, Section 64426.8 (a), (2). Submit the the report to the Division within 30 days of learning of the trigger exceedance.
- 10. Positive results and their associated repeat samples must be tracked on the Coliform Monitoring Worksheet
- 11. Repeat samples must be collected within 24 hours of being notified of the positive results. For systems collecting more than one routine sample per month, three repeat samples must be collected for each total coliform positive sample. For systems collecting one or fewer routine samples per month, four repeat samples must be collected for each total coliform positive samp At least three samples shall be taken the month following a total coliform positive.
- 12. For systems subject to the Groundwater Rule: Positive results and the associated triggered source samples are to be tracked on the Coliform Monitoring Worksheet.
- 13. For triggered sample(s) required as a result of a total coliform routine positive sample, an E.coli positive triggered sample (boxed entry) requires immediate notification to the Division, Tier 1 public notification, and corrective action.