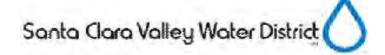
GUADALUPE RIVER COORDINATED MONITORING PLAN FISH TISSUE MONITORING


Prepared for

County of Santa Clara Parks and Recreation Department 298 Garden Hill Drive Los Gatos, CA 95032

December 2012

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612

26817577

TABLE OF CONTENTS

Section 1	Intro	duction	1-1
	1.1 1.2	Project Setting	
Section 2	Meth	ods	2-1
	2.1	Objectives	2-1
	2.2	Stream Sampling	2-2
		2.2.1 Collection	
		2.2.2 Species Identification	2-3
		2.2.3 Sample Analysis	2-3
		2.2.4 Water Quality	2-3
	2.3	Reservoir Sampling	2-3
		2.3.1 Collection	2-3
		2.3.2 Sample Analysis	2-4
		2.3.3 Water Quality	2-4
Section 3	Resu	ılts and Discussion	3-1
	3.1	Summary of Year 2 Mercury Results	3-1
	3.2	Water Quality Results	
	3.3	Comparison to Numeric Targets	3-4
	3.4	Comparison of Year 1 and Year 2 Mercury Results	3-5
Section 4	Refer	rences	4-1

TABLE OF CONTENTS

Tables

- Table 1. Stream Site Locations and Dates of Sampling
- Table 2. Reservoir site locations and dates of sampling
- Table 3. Mercury Concentrations in Fish by Location Type
- Table 4. Mercury Concentrations in Fish by Sampling Location
- Table 5. Weight of the Fish (g) by Location
- Table 6. Summary Statistics and Normality Tests for Guadalupe Reservoir Samples
- Table 7. Water Quality Data
- Table 8. Summary Statistics and Normality Tests for Mercury in Years 1 and 2 (ng/g, dry weight)
- Table 9. Results of the Twoway Anova Comparisons
- Table B-1. Stream Sampling Results
- Table B-2. Reservoir and Lake Sampling Results

Figures

- Figure 1. Site Map
- Figure 2. Mercury in Largemouth Bass and Blue Gill in Guadalupe Reservoir Samples
- Figure 3. Comparison of Year 1 and Year 2 Mercury Concentrations by Sampling Location
- Figure D-1. Distribution of Mercury by Species in Guadalupe Reservoir Samples
- Figure D-2. Oneway Anova Test of Mercury by Species in Guadalupe Reservoir Samples
- Figure D-3. Distribution of Mercury by Reservoir Location and Year
- Figure D-4. Distribution of Mercury by Stream Location and Year
- Figure D-5. Twoway Anova Test of Mercury by Location and Year
- Figure D-6. Twoway Anova Test of Mercury by Category (Stream v. Reservoir) and Year

Appendices

- A Field Datasheets
- B Analytical Results
- C Laboratory Reports and QA-QC Memo
- D Statistical Results
- E Bird Nesting Season

TABLE OF CONTENTS

Acronyms

13267 California Water Code Section 13267

Basin Plan SFRWQCB's Water Quality Control Plan

County Parks County of Santa Clara, Parks and Recreation Department

CMP Coordinated Monitoring Plan

NMFS National Marine Fisheries Service

SFRWQCB San Francisco Bay Regional Water Quality Control Board

TMDL Total Maximum Daily Loads

USFWS U.S. Fish and Wildlife Service

Water District Santa Clara Valley Water District

SECTIONONE Introduction

This report presents the Year 2 (2012) results from fish survey efforts performed by URS for the County of Santa Clara Parks and Recreation Department (County Parks) to satisfy San Francisco Regional Water Quality Control Board (SFRWQCB) reporting requirements for mercury Total Maximum Daily Loads (TMDL) in the Guadalupe River Watershed. These reporting requirements are in accordance with Clean Water Act Section 303(d), California Water Code Section 13267, and the Guadalupe River Coordinated Monitoring Plan (URS 2010). Specifically, this report presents fish sampling data and fish tissue mercury concentrations from several reservoirs and stream reaches within the Guadalupe River Watershed that will be used to evaluate impacts on aquatic ecosystems and human consumption of fish.

1.1 PROJECT SETTING

The Guadalupe River watershed covers approximately 170 square miles, draining the eastern Santa Cruz Mountains to San Francisco Bay through Alviso Slough. The Guadalupe River begins at the confluence of Guadalupe Creek and Alamitos Creek. Important tributaries include Ross Creek, Canoas Creek, and Los Gatos Creek.

The Guadalupe River Watershed contains several reservoirs that are used for flood control, drinking water storage, groundwater recharge, and recreation. These reservoirs include Calero, Guadalupe, Almaden and Lexington reservoirs, and Lake Almaden. The area within the Guadalupe River Watershed was historically used for quicksilver mining, which has contributed to mercury levels within the watershed. Figure 1 illustrates the location of each sampling site.

1.2 REGULATORY BACKGROUND

In 1998, several water bodies in the Guadalupe River watershed were identified by the California State Water Resources Control Board and the SFRWQCB as impaired by the presence of mercury according to provisions in the Clean Water Act Section 303(d). Being placed on the impaired waters list triggered the TMDL process for the watershed to address mercury loading to San Francisco Bay. On October 8, 2008, an amendment to the SFRWQCB's Water Quality Control Plan (Basin Plan) was adopted to amend mercury water quality objectives and incorporate TMDLs for mercury in the Guadalupe River watershed. The TMDL was approved on June 1, 2010 by the State Water Resources Control Board.

On November 23, 2009, the SFRWQCB, under the authority of California Water Code Section 13267, delivered a letter (13267 letter) requiring monitoring plans for mercury in waters downstream of New Almaden Mercury Mining District, Guadalupe Mercury Mine, and/or Bernal Mercury Mine. The 13267 letter was directed jointly to the County of Santa Clara, the Guadalupe Rubbish Disposal Company, Inc., the Midpeninsula Regional Open Space District, and the Santa Clara Valley Water District (Interested Parties).

On February 12, 2010, the Interested Parties presented a letter stating intent to develop a coordinated monitoring plan for monitoring mercury in waters downstream of the New Almaden Mercury Mine and Bernal Mercury Mine (Coordinated Monitoring Plan). The Final Coordinated Monitoring Plan (CMP) was submitted on November 15, 2010 by the Interested Parties to the SFRWQCB to satisfy the SFRWQCB's requirements for developing a plan for monitoring water and fish within the watershed. The CMP was approved by the SFRWQCB in a February 1, 2011 letter to the Interested Parties (SFRWQCB, 2011).

SECTIONONE Introduction

The survey efforts and results presented in this report are presented as part of the Coordinated Monitoring Plan's Fish Tissue Monitoring Objectives and satisfy the requirements for a Water Year 2012 Interim Monitoring Report due to the SFRWQCB on or before January 30, 2013.

SECTIONONE Introduction

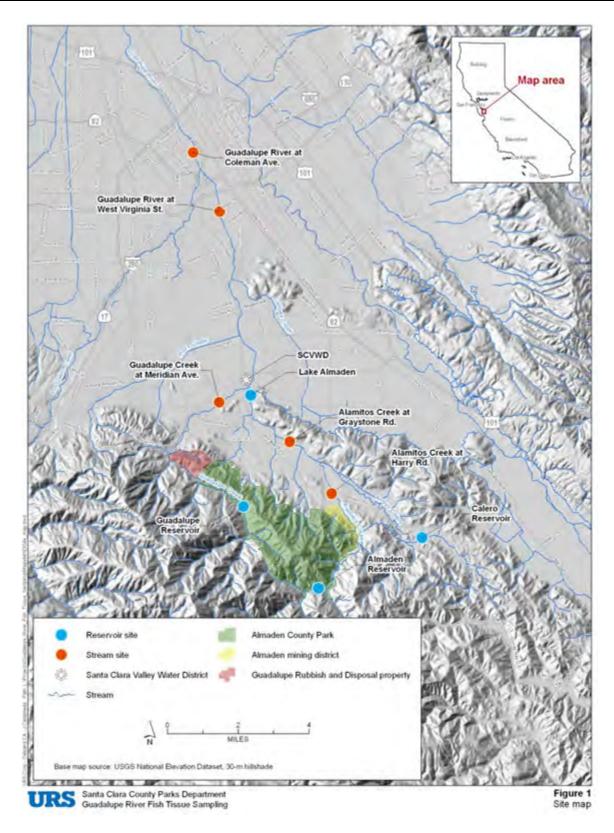


Figure 1. Site Map

SECTIONTWO Methods

All samples were collected in the Guadalupe River watershed. The Guadalupe River begins at the confluence of Guadalupe Creek and Alamitos Creek. Tributaries in the Guadalupe River watershed include Los Gatos Creek, Canoas Creek, Ross Creek, as well as Randol Creek and Golf Creek, both of which are tributaries to Alamitos Creek, and Arroyo Calero.

New Almaden Mining District is located along the watershed divide that drains towards both Guadalupe Reservoir and Almaden Reservoir. Guadalupe Reservoir is on Guadalupe Creek. Almaden Reservoir is on Alamitos Creek. Calero Reservoir is on Arroyo Calero, a tributary to Alamitos Creek.

2.1 **OBJECTIVES**

The following objectives are from the Guadalupe River Coordinated Monitoring Plan (URS 2010).

The objectives of the Fish Tissue Monitoring Plan are to satisfy the SFRWQCB reporting requirements in a manner that reflects the natural history of Guadalupe River watershed fish populations. The SFRWQCB formulated the following questions to guide the fish tissue monitoring and support the attainment of numeric targets derived for the Guadalupe River TMDL:

- What is the inter-annual variation in fish mercury for remediation effectiveness indicators (age-1 largemouth bass [Micropterus salmoides] in reservoirs and lakes) and California roach [Hesperoleucus symmetricus] in creeks and the river (trophic level 3 fish 5–15 cm and >15– 35 cm in length)?
- What is the trend in fish tissue mercury concentrations in remediation effectiveness indicators and target fish?

To answer these questions, a multi-year monitoring program has been established where fish are collected in streams and reservoirs and analyzed for total mercury content to help assess the success of TMDL implementation efforts. Fish are collected from stream locations below reservoirs in the Guadalupe River watershed, Santa Clara Valley Water District (Water District) reservoirs, and Lake Almaden. This report summarizes the second year of the sampling results.

The size of fish selected as remediation effectiveness indicators were based on the size distribution and species that have been historically present in the Guadalupe River Watershed, and may not correspond to the sizes prescribed by the SFRWQCB (2010). The SFRWQCB selected those target sizes based on a recommendation by the US Fish and Wildlife Service (USFWS; 2005). However, USFWS based their findings on studies outside of the Guadalupe River Watershed. Therefore, it is likely that the size ranges listed in the SFRWQCB's numeric targets do not reflect the conditions in the Guadalupe River Watershed. However, fish collections will allow the monitoring of the fish population and identification of other species that meet the TMDL numeric targets. The numeric targets selected by the SFRWQCB are assumed to be protective of avian reproductive success because they were calculated using a reference dose for methylmercury with impaired reproductive success in captive mallard ducks (Anas platyrhynchos) as an endpoint (USFWS 2005). Therefore, achievement of the numeric targets using the approach here would demonstrate the absence of reproductive harm to avian receptors.

SECTIONTWO Methods

2.2 STREAM SAMPLING

Stream sampling locations include Guadalupe River at Coleman Avenue, downstream of Los Gatos Creek; Guadalupe River at West Virginia Street, downstream of Canoas and Ross creeks; Guadalupe Creek at Meridian Avenue, downstream of Guadalupe Reservoir; Alamitos Creek at Graystone Lane, downstream of Arroyo Calero; and Alamitos Creek at Harry Road, downstream of Almaden Reservoir. These locations are shown on Figure 1.

2.2.1 Collection

California roach (Hesperoleucus symmetricus) were collected from five stream reaches within the Guadalupe River watershed, including sections of Alamitos Creek and Guadalupe Creek, as well as reaches within the Guadalupe River. The locations and the dates of sampling are described in Table 1. Field data sheets and photographs of these sampling locations are included in Appendix A.

Site #	Location	GPS Co	ordinates	Sampling Date (2012)
1	Guadalupe River at Coleman Avenue	37.3414	-121.9022	June 26
2	Guadalupe River at West Virginia Street ¹	37.3162	-121.8885	June 29
3	Guadalupe Creek at Meridian Avenue ²	37.2386	-121.8869	June 29
4	Alamitos Creek at Graystone Lane	37.2224	-121.8511	June 26
5	Alamitos Creek at Harry Road	37.2015	-121.8289	June 27

Table 1. Stream Site Locations and Dates of Sampling

Fish were collected using backpack electrofisher (Smith-Root Model LR-24) units. Stream conductivity and temperature measurements were recorded before each stream electrofishing session began in order to adjust electrofisher unit settings to minimize damage or mortality to non-target fish. Electrofishing was conducted in an upstream direction for each reach, following methods described in Guidelines for Electrofishing Waters Containing Salmonids Listed under the Endangered Species Act [National Marine Fisheries Service (NMFS) 2000]. Block nets were used at the upstream extent of each reach in channels that were relatively wide or lacked instream features (i.e., a narrow channel leading to a relative high-gradient, low-flow riffle or a relatively isolated pool) to confine fish and prevent escape from the electrical field. Individuals greater than 4 cm were kept and processed for mercury analysis in the following manner:

- Specimen identified and the identity verified by fin ray counts (as described below)
- Fork and standard length (mm) measured on a fixed measuring board
- Specimen weighed using an electronic scale (Ohaus Scout SC4010, 400 + 0.1g)

² During Year 1, this site was moved upstream to just below Masson fish ladder due to high flows. This year, flows were much lower and the site originally identified was sampled.

¹ During Year 1, this site was located at Foxworthy Ave. Due to construction activities from the Upper Guadalupe River Flood Control Project this section of stream was completely dry and diverted around the project area. URS biologists, after consulting with SCVWD and NMFS, decided to move the site downstream to West Virginia Street whgere suitable habitat was present.

SECTIONTWO Methods

- Carcass rinsed with deionized water
- Individual samples placed in a sterile container and assigned a specimen number

Species Identification

Captured specimens were verified by fin ray counts due to the morphological similarities between the target fish and hitch (Lavinia exilicauda), which is known to hybridize with California roach within the watershed. Dorsal ray counts were performed to distinguish between each species (California roach dorsal rays = 7–9, hitch dorsal rays = 10–13, [Moyle 2002]). Fish collected with dorsal ray counts of 10 or more were released. Fish collected with a dorsal ray count between 7 and 9 were kept for processing and analysis. Other fish not selected for analysis were identified and released in the immediate capture area.

2.2.3 Sample Analysis

Samples were placed on dry ice for temporary storage in the field then placed into a zero-degree freezer and transported to the laboratory on dry ice. Stream fish were analyzed individually for total mercury concentration. Dry and wet weight concentrations of mercury were determined along with percent moisture.

2.2.4 Water Quality

Water quality parameters, including conductivity, temperature, pH, and dissolved oxygen were measured at all fish sampling locations. Surface water samples were not collected for mercury parameters.

RESERVOIR SAMPLING 2.3

Lake and reservoir sampling locations include Guadalupe Reservoir, Almaden Reservoir, Calero Reservoir and Lake Almaden. Lake Almaden is located on Alamitos Creek just upstream of Alamitos Creek's confluence with Guadalupe Creek (shown on Figure 1).

2.3.1 Collection

Young of the year largemouth bass measuring 60 to 90 mm (standard length) were collected from reservoirs within the Guadalupe River watershed. The locations and dates of sampling are described in Table 2. At the Guadalupe Reservoir location, sufficient numbers of largemouth bass and bluegill (Lepomis macrochirus) were collected to allow for statistical comparison (10 fish of each species). Bluegills were collected in 2012 because they are similar to the green sunfish collected in 2011.

Site #	Location	GPS Co	ordinates	Sampling Date (2012)
1	Calero Reservoir	37.1857	-121.7755	August 23
2	Lake Almaden	37.2394	-121.8698	August 23
3	Almaden Reservoir	37.1591	-121.8426	August 23
4	Guadalupe Reservoir	37.1933	-121.8721	August 23

Table 2. Reservoir site locations and dates of sampling

Fish were collected using a boat-mounted electrofisher unit [Smith-Root Model SR-16H equipped with a 7.5 generator powered pulsator (GPP)]. Water conductivity and temperature were measured before electrofishing began in order to adjust electrofisher unit settings to minimize potential damage or mortality to encountered fish. Four amps of output power was initially employed and adjusted as necessary to elicit appropriate taxis. Captured fish were placed in an aerated live well until they were processed. Discrete locations within the reservoirs and Lake Almaden were not sampled individually; the sampling vessel boat was run as close to the shoreline as the draft allowed in a counter-clockwise direction from the launch point. Sampling depth ranged from 1 to 8 feet deep. Each fish collected for mercury analysis was processed in the following manner:

- Specimen identified and enumerated.
- Fork and standard length (mm) measured on a fixed measuring board.
- Whole fish (year old largemouth bass) placed into heavy-duty aluminum foil (shiny side out) and labeled.
- Samples placed on dry ice for temporary storage in the field and then placed into a zerodegree freezer and transported to the laboratory on dry ice.

2.3.2 Sample Analysis

Reservoir fish were analyzed individually for total mercury content. Dry and wet weight concentrations of mercury were determined along with percent moisture.

2.3.3 Water Quality

Water quality parameters, including conductivity, temperature, pH, and dissolved oxygen were measured at all fish sampling locations. Surface water samples were not collected for mercury parameters.

3.1 **SUMMARY OF YEAR 2 MERCURY RESULTS**

Summary statistics for whole body mercury concentrations for fish captured at the sampling locations are listed in Tables 3 and 4. These concentrations are reported in both wet and dry weight. Mercury concentrations for individual fish are tabulated in Appendix B. The laboratory reports and the QA/QC analysis of these results are included in Appendix C.

On average, lake and reservoir fish had higher mercury concentrations in their tissues than stream fish (Table 3). Average mercury concentrations were highest in fish caught at Almaden Reservoir (Table 4). Fish caught downstream in Alamitos Creek at Harry Road and at Graystone Lane and in Guadalupe River at West Virginia Street and at Coleman Avenue had incrementally lower average mercury concentrations in their tissues (2446, 1483, 1186, and 319 ng/g dry weight, respectively). Fish caught at Lake Almaden had average mercury concentrations similar to fish caught nearby in Alamitos Creek at Graystone Lane (1721 and 1483 ng/g dry weight, respectively).

Fish caught at Guadalupe Reservoir and at Guadalupe Creek at Meridian Avenue had similar average mercury concentrations (2923 and 2509 ng/g dry weight, respectively). Calero Reservoir, which receives only occasional flow from Almaden Reservoir, had lower average mercury concentrations in fish (465 ng/g dry weight).

The weight of the fish collected at each location is indicated in Table 5. Lake and reservoir fish were generally larger than stream fish, with the exception of fish collected in the Guadalupe Creek at Meridian Avenue.

Because there is a potential for total mercury uptake to vary by species for young of the year fish in the lakes and reservoirs of the Guadalupe River watershed, a statistical test was performed to evaluate whether or not there was a significant difference in whole body mercury concentrations between largemouth bass and blue gill in the Guadalupe Reservoir. Largemouth bass was found to have significantly higher total mercury content than blue gill (t-Test assuming unequal variances, p-value = 0.0001). The results of this test are summarized in Table 6 and Figure 2 and detailed in Appendix D.

Table 3. Mercury Concentrations in Fish by Location Type

Parameter	Type	Count	Mean	Std Dev	CV	Min	Median	Max
	Stream	81	1693	902	0.53	139	1600	3630
Mercury (ng/g, dry weight)	Lake	80	2708	2075	0.77	177	1905	7730
	All Samples	161	2197	1671	0.76	139	1810	7730
	Stream	81	406	215	0.53	38.3	393	829
Mercury (ng/g, wet weight)	Lake	80	584	437	0.75	37.3	427	1750
	All Samples	161	494	354	0.72	37.3	425	1750
ng/g = nanogram per gram	ı	ı		<u>'</u>				

Table 4. Mercury Concentrations in Fish by Sampling Location

Sampling Location	Туре	Count	Mean	Std Dev	CV	Min	Median	Max
Mercury, Dry Weight Concentrati	on (ng/g)					ľ	•	
Guadalupe River at Coleman Ave	Stream	13	319	172	0.54	139	277	800
Guadalupe River at W. Virginia St	Stream	12	1186	283	0.24	839	1145	1580
Guadalupe Creek at Meridian Ave	Stream	16	2509	491	0.20	1720	2575	3430
Alamitos Creek at Graystone Lane	Stream	20	1483	455	0.31	957	1380	2820
Alamitos Creek at Harry Road	Stream	20	2446	556	0.23	1690	2330	3630
Guadalupe Reservoir	Lake	20	2923	916	0.31	1780	2715	4480
Lake Almaden	Lake	20	1721	149	0.09	1500	1685	1990
Almaden Reservoir	Lake	20	5722	1023	0.18	3830	5815	7730
Calero Reservoir	Lake	20	465	257	0.55	177	433	1310
Mercury, Wet Weight Concentrati	on (ng/g)						<u>I</u>	
Guadalupe River at Coleman Ave	Stream	13	79	36	0.46	38.3	72	173
Guadalupe River at W. Virginia St	Stream	12	260	48	0.19	177	253	336
Guadalupe Creek at Meridian Ave	Stream	16	607	102	0.17	439	645	751
Alamitos Creek at Graystone Lane	Stream	20	352	93	0.26	242	321	597
Alamitos Creek at Harry Road	Stream	20	598	116	0.19	429	603	829
Guadalupe Reservoir	Lake	20	645	168	0.26	415	617	946
Lake Almaden	Lake	20	382	27	0.07	346	379	428
Almaden Reservoir	Lake	20	1211	229	0.19	795	1195	1750
Calero Reservoir	Lake	20	98	56	0.57	37.3	91	289
ng/g = nanogram per gram	I	I	1			I	<u> </u>	

Sampling Location	Type	Count	Mean	Std Dev	CV	Min	Median	Max
Guadalupe River at Coleman Ave	Stream	13	3.2	1.9	0.58	1.2	2.8	7.2
Guadalupe River at W. Virginia St	Stream	12	4.6	2.8	0.61	1.8	3.7	11.8
Guadalupe Creek at Meridian Ave	Stream	16	6.0	3.6	0.60	3.3	5.1	18.5
Alamitos Creek at Graystone Lane	Stream	20	3.5	2.1	0.60	1.3	2.8	8.1
Alamitos Creek at Harry Road	Stream	20	2.3	1.0	0.41	1.3	2.1	5.2
Guadalupe Reservoir	Lake	20	7.6	2.4	0.32	3.8	8.2	10.6
Lake Almaden	Lake	20	6.7	1.5	0.23	4.4	6.2	9.7
Almaden Reservoir	Lake	20	4.9	2.5	0.51	2.3	3.9	10.0
Calero Reservoir	Lake	20	6.0	2.3	0.38	2.7	5.8	9.5
g = gram	1		1	<u>'</u>			•	

Table 5. Weight of the Fish (g) by Location

Table 6. Summary Statistics and Normality Tests for Guadalupe Reservoir Samples

Metric				nmary Sta y in ng/g, o	tistics dry weight)		Shapiro	o-Wilk W Test
Species	No. of Samples	Mean	Std Dev	Min	Median	Max	p-value	Distribution
Blue Gill	10	2220	346	1780	2205	2820	0.7485	Normal
Largemouth Bass	10	3626	743	2380	3985	4480	0.0857	Normal

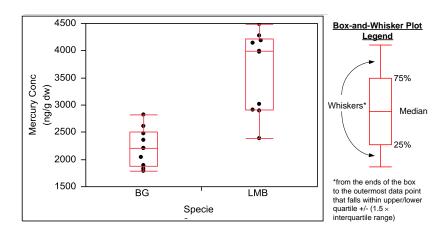


Figure 2. Mercury in Largemouth Bass and Blue Gill in Guadalupe Reservoir Samples

3.2 WATER QUALITY RESULTS

Water quality parameters, including temperature, dissolved oxygen and conductivity were measured at all fish sampling locations. These data are in Table 7.

Sampling Location	Туре	Temperature (°C)	Dissolved Oxygen (mg/L, % saturation)	Conductivity (µm/cm)
Guadalupe River at Coleman Ave	Stream	18.0	8.6, 91%	670
Guadalupe River at W. Virginia St	Stream	19.8	7.1, 80%	472
Guadalupe Creek at Meridian Ave	Stream	17.3	9.1, 95%	364
Alamitos Creek at Graystone Lane	Stream	17.8	9.7, 104%	469
Alamitos Creek at Harry Road	Stream	15.7	9.5, 96%	337
Guadalupe Reservoir	Lake	27.0	8.0, 100%	321
Lake Almaden	Lake	24.2	14.4, 171%	500
Almaden Reservoir	Lake	26.5	11.3, 117%	314
Calero Reservoir	Lake	23.2	8.5, 101%	449

Table 7. Water Quality Data

3.3 COMPARISON TO NUMERIC TARGETS

The Basin Plan for mercury in the Guadalupe River watershed set forth numeric targets for mercury in fish tissue that, if attained, protect ecological and human health. The numeric targets for fish tissue mercury concentrations are:

- 0.05 mg/kg (50 ng/g) methylmercury fish average wet-weight concentration in whole trophic level 3 fish 5–15 cm in length, and
- 0.1 mg/kg (100 ng/g) methylmercury fish average wet-weight concentration measured in whole trophic level 3 fish 15-35 cm in length

All of the fish collected were trophic level 3 fish that were 5 to 15 cm in length. Total mercury concentrations for these fish, on a wet weight basis, are summarized by location in Table 3 and results for individual fish are listed in Appendix B.

There is a well-established relationship between total mercury and methylmercury in fish tissue (Bloom 1992); this relationship was confirmed for small fish in the Guadalupe River watershed, as discussed in the Year 1 Interim Report.

Because total mercury concentrations includes all of the methylmercury found in fish tissue, numeric targets for fish tissue would be met if total mercury concentrations were less than 0.05 mg/kg (50 ng/g) wet weight. Although average mercury concentrations were greater than 50 ng/g wet weight at each sampling location, four individual fish had mercury concentrations less than 50 ng/g wet weight. Two of these fish were collected at Calero Reservoir and the other two were collected in Guadalupe River at Coleman Avenue.

COMPARISON OF YEAR 1 AND YEAR 2 MERCURY RESULTS 3.4

Summary statistics for total mercury concentrations for fish captured during both Year 1 and Year 2 are listed in Table 8 and the results are shown on Figure 3. In some locations average concentrations of total mercury in fish have increased (e.g., Almaden Reservoir, Guadalupe Creek at Meridian Avenue) while average mercury concentrations in fish at other locations have decreased (e.g., Lake Almaden, Guadalupe River at Coleman Avenue).

Statistical tests were performed to evaluate inter-annual trends in total mercury concentrations. The results of these tests are summarized in Table 9 detailed in Appendix D. These tests found that total mercury trends between Year 1 and Year 2 by both location and type of site (e.g., streams, reservoirs) are not statistically significant.

SECTIONTHREE

Table 8. Summary Statistics and Normality Tests for Mercury in Years 1 and 2 (ng/g, dry weight)

Metric					Sumn	nary Stat	tistics			Shapii	o-Wilk W Test
Location	Type	Year	Count	Mean	Std Dev	CV	Min	Median	Max	p-value	Distribution
Guadalupe River at Coleman Ave	Stream	2011	20	599	89	0.15	480	565.5	827	0.0568	Normal
Guadalupe River at Coleman Ave	Stream	2012	13	319	172	0.54	139	277	800	0.0067	Non-parametric
Guadalupe River at Foxworthy Ave	Stream	2011	20	1689	558	0.33	1020	1615	3080	0.0844	Normal
Guadalupe River at W. Virginia St	Stream	2012	12	1186	283	0.24	839	1145	1580	0.1087	Normal
Guadalupe Creek at Meridian Ave	Stream	2011	20	1722	572	0.33	1300	1615	3990	<.0001	Non-parametric
Guadalupe Creek at Meridian Ave	Stream	2012	16	2509	491	0.20	1720	2575	3430	0.6353	Normal
Alamitos Creek at Graystone Lane	Stream	2011	20	1698	551	0.32	1070	1525	3300	0.0081	Non-parametric
Alamitos Creek at Graystone Lane	Stream	2012	20	1483	455	0.31	957	1380	2820	0.0049	Non-parametric
Alamitos Creek at Harry Road	Stream	2011	20	2882	939	0.33	1600	3010	5290	0.1471	Normal
Alamitos Creek at Harry Road	Stream	2012	20	2446	556	0.23	1690	2330	3630	0.1010	Normal
Guadalupe Reservoir	Reservoir	2011	9	3168	779	0.25	2160	2920	4900	0.1691	Normal
Guadalupe Reservoir	Reservoir	2012	20	2923	916	0.31	1780	2715	4480	0.0222	Non-parametric
Lake Almaden	Reservoir	2011	20	3012	591	0.20	1680	3195	3670	0.0169	Non-parametric
Lake Almaden	Reservoir	2012	20	1721	149	0.09	1500	1685	1990	0.2380	Normal
Almaden Reservoir	Reservoir	2011	20	3723	1131	0.30	2300	3530	7210	0.0189	Non-parametric
Almaden Reservoir	Reservoir	2012	20	5722	1023	0.18	3830	5815	7730	0.8587	Normal
Calero Reservoir	Reservoir	2011	16	509	264	0.52	287	435.5	1320	0.0002	Non-parametric
Calero Reservoir	Reservoir	2012	20	465	257	0.55	177	432.5	1310	0.0014	Non-parametric

ng/g = nanograms per gram

Std Dev = standard deviation

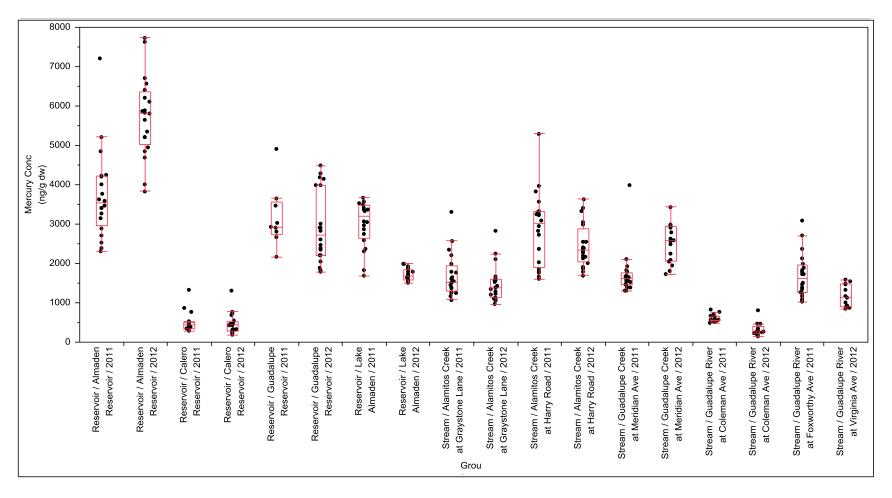


Figure 3. Comparison of Year 1 and Year 2 Mercury Concentrations by Sampling Location

Table 9. Results of the Twoway Anova Comparisons

N	Metric	p-value	Conclusion
Factors:	Location and	Year	
Whole M	odel Test	<.0001	There is at least one significant regression factor in the model.
Effect Tests	Location	<.0001	Location is a significant factor; with some locations have significantly higher total mercury.
1 6565	Year	0.5998	Year is not a significant factor.
Factors:	Category and	Year	
Whole M	odel Test	<.0001	There is at least one significant regression factor in the model.
Effect Tests	Category	<.0001	Category is a significant factor; with Reservoir has significantly higher total mercury.
10313	Year	0.9088	Year is not a significant factor.

SECTIONFOUR References

Bloom, NS (1992). On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49:1010-1017.

- McGinnis, Samuel M. 2006. Field Guide to Freshwater Fishes of California. California Natural History Guides. 505 pp.
- Moyle, Peter B. 2002. Inland Fishes of California. University of California Press, Ltd. 502 pp.
- NMFS. 2000. Guidelines for Electrofishing Waters Containing Salmonids Listed under the Endangered Species Act. June.
- URS Corporation. 2010. Guadalupe River Coordinated Monitoring Plan. Prepared for the County of Santa Clara Parks Department. November 15.
- USEPA Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses; USEPA; July 2002.

Appendix A
Field Datasheets

Date: 6/ze//2 Time: 9/5			GPS Lat (DMS): GPS Long (DMS):	e (
eters			ett	
自己			Voltage: 72 Duty Cycle (Hz): 33	30%
%: ~ ~ ductivity (us/cm):	76	П		7.
/		1		
Fish Sampling				
Species	Fork L (mm), We g	Weight(g) Ray Count	int Condition	Disposition
Sucher	36K 276			
(200	155-146			
Green Confish	BC 74			,
	120 102			
H H				
1 Roch CBIR	34 48	2.4	CR 11P	
	GJ 156	3.2	Water	
1 Reach		00		
2	dß	3.0		
Prach CBSR	1 15052	1.5		
	43 37			7
Mark CBBR	09 79	4.0		
Cal Rout CB7R	54	2.8		
FAI RINGH CB8 R	49 43	1.3		
Roach CB9R		1.8		
Pickle Sc	81 68			
Richelly Sc	115 150			
Pacific Comples	115			
	6			

Time: 12:45			GPS Long (DMS):	
Water Quality Parameters			E-fisher settings	
Temperature (deg C): 7 9			Voltage: 100	(00)
D.O. (mg/L): 0/, 7			Duty Cycle (Hz): 3/	3 hortz
D.O. (%): 10.7		-	Output (A):	
Conductivity (us/cm): 409	204 (+185)	Skin	922	Seconde
pH:				
Fish Sampling	dela			
# Species	Fork L (mm) W	Weight(g)	Ray Count Condition	Disposition
1 8 .: 1 40014	87 78			3
1000	NS 78			
DL.	93 77			
Park	83 C9			
5 Carl Children	135 [1]			
1	135 114			
()	72 63	6.5	7	
8 Parla Santan	82 67			
(a) / b	-	7.5		
David Con	-			
Tal Breek 1	83,	7.4		
12 (BACK - C/4R	67 59	4.0		
79-	51 46	1,9		
	80 69			
-	Ri 72	8.1		
1		SH	Y = 1	
VI 01.	93 8			
18 + 1	41 36			
19 Cal Rouch GI-8R	60 53	2.8		
A	8 / / / /	7		

SCVWD Fish Tissue Sampling for Mercury Page 2 of 2

Disposition SMO F 199 B - 45.5 Arech. SA J. C. . Ray Count | Condition Date: 3 M3: 2.2 Weight(g) 2 0 J 4.8 Fork L (mm) 85 75 25 50 19 54 95 00 44 00 20 29 五五 28 In 61 Zee CLIGR GLIBR Rouch - 61 18-R -G119D 36 Pricky Sculpin SCUIPIN Sculpin Sampling #/Location: Roach Roach Rooch Merin Rage Poar Posch Posch Roach Fish Sampling Prickly P. Cx 12 39 P. Chil # Species 29 T. () 30 () 31 (35 ra 24 Ca 34 33 (22 23 7 27 28 26 32 (21 25 38 37 40 43 42 44 45 46 47 48 41 50

Time.				GPS Long (DMS)	
Water Quality Parameters				E-fisher settings	
Temperature (deg C): 19,4				Voltage: / O O O Duty Cycle (Hz): 33	V Ho 30% Data
4				Output (A): 0.4 A	
Conductivity (us/cm): 19 2, 6 pH:	551			516 Shaking	is seconds
Fish Sampling	Standerd				
# Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
1 Prickly School	115/138			Eire	Elens
1 Crasson Outh R.	9///9				11
Legions, th B.	41740			1,	
5					
9					
7					
8					
6					
10					
11					
12					1
13					
14					
15					
16					
17	64				
18					
19					

HBIR HBZRet

SCVWD Fish Tissue Sampling for Mercury Page 1 of 2

SCVWD Fish Tissue Sampling for Mercury Page 2 of 2

Disposition Date: 6/27/12 Ray Count Condition Fork'L (mm) Weght(g) 4 2 0 Sampling #/Location: HIMAGEN & HAPPY 15/49 53/46 23/45 11/10 52/46 52/45 19/16 52/28 48/44 addi mach 19 R HB 20 R HR14 R 4813R HB 12 R HB 17 R HR 18R HR 11 R HRIG R HR Fish Sampling 29 reach 30 reach 33 + 12 reach 24 roach roach road 25 reach 26 roach 28 rogul 22 fouch roach # Species 21 27 31 35 36 39 38 40 41 42 43 44 45 46 48 49 47

Date: 0.0 / 2.0 − 7.0 Time: 1.0 Ø + 0	GPS Long (DMS)	
Water Quality Parameters Temperature (deg C): 8.0 D.0. (mg/L): 6.7 D.0. (%): 8.0%	E-fisher settings Voltage: 7 2 S Duty Cycle (Hz): 30 Me Output (A): 0.00 A	1c 35% Onty
vity (us/c	1217 5	Secondi
	ر د د نواند د د نواند	Disposition
Species Fork L (mm) Weight(g) Ray	Ray Count Condition	- Consorde
C + 35,+ 3		
X E		
6		
7		
.5		
91		
7		
81		
61		

SCVWD Fish Tissue Sampling for Mercury Page 2 of 3 Salon Fish Ladder Guader Sampling #/Location:

Date: 08/27/2012

+ 12 sculpin

GL-Jalupe Crell SCVWD Fish Tissue Sampling for Mercury Page 2 of 3

Date: 06/27/2012

Campling #/location: 2) An (PEC @ Monday She Bu Bu Weather:	<i>d र</i> Weather:
/	GPS Lat (DMS):
	GPS Long (DMS):
	E-fisher settings
Water Quality Parameters	ב וומנים מבתיוו 95
Temperature (deg C): 127	Voltage:
	Duty Cycle (Hz): 30
D.O. (mg/L).	Output (A): 22 %
0.0. (%): 93 /0	
Conductivity (us/cm): 364 , 428 .	3699 seconds
PH;	

Fish Sampling	FOR14/5T()			
# Species	Fork L (mm) Weight(g)	Weight(g)	Ray Count	Condition	Disposition
1 Frach - 146.12	36/111	18,5			
Conclos	64 156	3.3			*
rocach	70/61	7.9			
social social	00/169	2			
Social	75/63	5.2			
2000	80/71	6.8			,
rouch	75/62	5.7			
Soach	66/59	3.6			
Sport -	81/70	0.0			
	14/12	4.8			
(20)	40/15	2.6			
12 roach - GCIRK	7162	4.4			
25) -	183/31	0.9			
1	08/60	2			
1	20/30	6.3			
roach	45/59	3.6			
17					
18					
19					
30					

				GPS Long (DMS):	
11111e. 0750					
Water Quality Parameters				E-fisher settings	
9				Duty Cycle (Hz): 30	33%
D.O. (mg/L):				- 49	
0.0. (%): X0	27				rock. D.
					second for
Fish Sampling	73 75				\$ C
# Species	Must (mm)	Weight(g)	Ray Count	Condition	Uisposition
1 anoth MBIR	59 65	2.5	1		'n
Reach	69 19	20	1		
ROACH	94 89	4.7	1		
Roach	44 49	8.1			
	0	1		L	
-0	Set	25	人がだり	LORSON	
			1		
VB.	24 98		>		
1	7	3.4	7		
n - y		19	3 /		
11 (Oach - 188 R	in	700	,		
12 road - VB9R	52 57	1.0)		
13 roach - UBIDR	1	200	1		
	2	11:00			
15 roach - 1812R	55 64	2.0	7		
16					
17	+				
18	+				
19	-				

Date: 0.55 C.	129/2012	Weather: Sweather: GPS Lat (DMS): GPS Long (DMS):	10 Jan 1900 1900
Water Quality Parameters Temperature (deg C): D.O. (mg/L): D.O. (%): Conductivity (us/cm):	512, 1co to	E-fisher settings Voltage: / O O Duty Cycle (Hz): O Output (A): O,	SOM 30% Dety XK
.Hd			,
Fish Sampling	Stenderd		
# Species	ight(g)	Ray Count Condition	Disposition
1 Roach	60/67 3.6	7	CATOR
2 // //	0.0 82118	>	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 (/	72/81 702	7	V 12 17 17 17 17 17 17 17 17 17 17 17 17 17
4	50/65 3.7	7	18150
5 // /	46/53 102	7	18/4K
9			
7			
8			
6			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
00			

Sampling #/Location: (a/2(b) Reservoir	Weather: Danny 70
Date: \$ 7/23/2012	GPS Lat (DMS):
Time: 8'3D	GPS Long (DMS):

Water Quality Parame	eters	
Temperature (deg C):	23,2	
D.O. (mg/L):	8.50	
D.O. (%):	10/1/9	
Conductivity (us/cm):	444	1459
pH:		

E-fisher set	tings	
Voltage:	Lon Trone	50-500 30%
Duty Cycle	(Hz): 30	
Output (A):	4+6	
	1286	

Fish Sampling	511	Day of Santa	Tax asset	Tourstein	Disposition
# Species	Fork L (mm)		Ray Count	Condition	
1 corgenoth	11000	301410			Rheimo
2	280/320				
3	365/420				
4 1 Gold Fish	- 200	5			
5 Tak Perch	74/86	0			
6 Esa Perch	97/113				
7 Lygemoth	95/112				
8 ~ **	27/108				
9 Tule Perch	78/90				
10 2	78/91				
11 B/ma/11	145/175				
12 Lagemosth	97/1/4				
13 Bluesill	84180				
14 Black Craggie	145/181				
15 Bloggell	80/102				
16 B/mail	65/82				
17 Golden chinar	59/65				
8 11	65/72				
9 7	55/65				- V
20 **	55/62				1/

21 LA Z 85 1 TF

Date: 7/23/12

Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
55/60			CRLMB26	55/65 3.2
3-197			CRLMB27	77/90 10.2
84/696				
75187				
131/92	113			
72/90	9.5			
82/93				2.7
78/89	9.7			
80/90	10.6			
73/85	8.1			
78/89	9.9			
76/88	9.8			
55/66				
79/91				
70/81				
	5.9			
	312			7
	_			
54/62				
	3 = 1/4 = 7	34/47 84/696 75/87 81/92 113 72/93 78/89 9.7 80/90 10.6 73/85 8.1 78/89 9.8 55/66 3.0 78/88 9.8 55/66 3.0 78/88 9.8 79/91 100 70/81 7.1 59/70 4.3 65/74 6.2 76/89 8.4 64/74 5.9 57/66 3.2 53/62 3.3 54/62 3.3 54/62 3.3 54/62 3.8 53/62 3.8 53/62 3.8 54/62 3.8 53/62 3.8 53/62 3.8 54/62 3.8 53/62 4.5	84/696 75/87 31/92 113 71/90 9.5 82/93 78/89 9.7 80/90 10.6 73/85 8.1 78/89 9.8 55/66 3.0 78/88 9.8 79/91 100 70/81 7.1 59/70 4.3 65/76 6.2 76/89 8.4 64/74 5.9 57/66 3.2 53/62 3.3 54/65 3.3	34/47 CR LMB 27 84/696 15/87 31/92 113 72/90 9.5 82/93 78/89 9.7 80/90 10.6 73/85 8.1 78/89 9.8 55/66 3.0 78/88 9.8 79/91 100 70/81 7.1 59/70 4.3 65/76 6.2 76/89 8.4 64/74 5.9 57/66 3:2 53/62 3.3 14/65 3.3 14/65 3.3 54/62 3.8 53/62 3.8 53/62 3.8 53/62 2.8 58/69 4.5

Golden shirar Blackeinggins

Pempkinseed

Bluegell + 50

Sampling #/Location: Lake Almader	Weather: Swany Will 510		
Date: 7/23/12	GPS Lat (DMS):		
Time: (200'	GPS Long (DMS):		

Water Quality Parameters	
Temperature (deg C): 24.2	
D.O. (mg/L): /4.4	
D.O. (%): 17)	
Conductivity (us/cm): 500 /508	
pH:	

Voltage:	50-500	
Duty Cycle	(Hz): 30 20%	
Output (A):		

Fish Sampling	STO / FORK		-	Learning	Disposition
# Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
1 LA LMB 1	75/81	9.1			
2 LA Lt16 2	58/65	4.2			
3 LA LTIN 3	74/85	7.2			
4 LA LMBU	64174	Sel			
51A LMB5	19/68	3-8			
61A LMB 6	62/72	5.1			
71A LMR7	61/20	H.H			
8 LA LIMB &	62/78	6.1			
9 LA LMB 10 9	74/86	8.4	HIEN		
10 (A-1/18 to	64/74	5.6			
11 A LMBN	73/89	7.2			
12 LA LMB 12	74/86	8.4			
13 1 4 LMB 13	69/90	62			
14 A N8 4	74/88	8.4			
15 LA LMB 15	75/85	7.7			
16 LA LMB 16	62/74	5-1			
17 / A LMg 17	14/85	9.7			
18 LA LMB 18	66174	6.3			
19 LA LMB 19	68/79	6.2			
20 LA LMB 20	165196	5.2			

Sampling #/Location:

Date:

	Fish Sampling							
	Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition		
21	LA LMB 21	741/83	6.2					
22	LALMR 22	71/82	6.2					
23	LA LM 8 23	71182	6.2					
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43			Later 1					
44			-					
45								
46								
47								
48								
49								
50								

Sampling #/Location: Almaden	2030	Weather: Surry 80"
Date: 07/23/2012		GPS Lat (DMS):
Time: 1400		GPS Long (DMS):

Water Quality Parame	ters
Temperature (deg C):	26-5
D.O. (mg/L):	11.3
D.O. (%):	117%
Conductivity (us/cm):	314
pH:	

Voltage: 50-500		
Duty Cycle (Hz): 60	15%	
Output (A):		
612		
U.A.		

Fish Sampling # Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
1 ARLMB-01	76/88	(1)			
2 ARLM8-02	77/89	11.2			
3 ARLMB-03	62/70	44			
4 ARLMB-04	65/76	6.1			
5 ARLMB - 05	66179	6.8			
6 ARLMB-06	58/66	3.4			
7 ARLMB-07	54/64	2.6			
8 ARLMB 08	76/90	9.7			
9 ARCME-09	76/88	89			
10 ARLMB-10	57/68	3.8			
11 ARLMB-11	55/62	2.8			
12 ARLMB 12	54/64	3.1			
13 ARLMB - 13	55/62	217		-	
14 ARLMB - 14	54/61	3.2			
15 ARLMB-15	52/60	2.6			
16 ARCMB- 16	57/64	4.0		-	
17 ARLMO IT	52/60	2.6			
18 ARLM3-18	52/60	2.3	-		
19 ARLMB-19	66/77	6.3			
20 ARLMB-20	72/82	7,4			155.0

²⁰ samples per site, 17 whole THg, 1 whole THG and MeHg, 1 gutted THg, 1 gutted Thg and MeHg.

Sampling #/Location:

Date:

Fish Sampling # Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
21 DRLMB-21	65/75	6.2			
# Species 21 BRLMB-21 22 ARLMB-22	76/88	10.0			
23					
24					
25					
26					
27					
28					
29					
30					= 4
31					
32					
33					
34					
35					
36					
37					
38	100				
39			1		
40					
41					
42					
43					
44					
45			1		
46					
47					
48					
49					
50					

Sampling #/Location: Guadaluge Reservoir	Weather: Sunny Wind a 5 805
Date: 7/77/12	GPS Lat (DMS):
Time: 130h	GPS Long (DMS):

Water Quality	Parameters	
Temperature (deg C): 80.6	
D.O. (mg/L):	FOR 8.0	
D.O. (%):	100	
Conductivity (u	is/cm): 32/	
pH;		

Voltage:	50-5	60		
Duty Cycle	(Hz): 60	20	10	
Output (A)				

Fish Sampling	6 STD/POLK				
# Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition
1 GR LMB 1	96/89	9.3			
2 GR LMB 2	72/95	80			
3 CR 6M5 3	53/60	2.7			
4 GR LMB 4	74/83	8.7			
562 LINB 5	73/84	8.6			
6 GR LMB 6	73/85	9.5			
7612 86.7	64/76	810			
8 GR 868	68/88	10.4			
9 GR BG9	53/64	4.4			
10 GR BG10	57/69	6.2			
11 F BGII	52/64	5.1			
12 62 3617	63/76	8.4			
13 GR LMB 13	69/81	7.6			
14 GR LMB 14	54/60	2.7			
15 GR LMB15	59/65	3.0			
16 CR LMB16	11/60	2.5			
17 GR BG 17	59/73	5.5			
18 GR BG 18	64/82	9.5			
19612 156-19	54/65	4.2			
20 6 B B G Z L	51/62	3.8			

20 samples per site, 17 whole THg, 1 whole THG and MeHg, 1 gutted THg, 1 gutted Thg and MeHg.

Sampling #/Location:

Date:

Fish Sampling							
# Species	Fork L (mm)	Weight(g)	Ray Count	Condition	Disposition		
21 GR 136 21	50/60	4.0					
21 GR BG 21 22 GR BG 22	50/60 52/60 58/68 62/23	4.0 3.7					
23 LR LMR 23	58/68	3.2					
24 6R LMB 24	62/73	42					
23 GR LMB 23 24 GR LMB 24 25 GR BG 25	51/69	600					
26							
27							
28							
29							
30							
31							
32				L			
33							
34							
35				-			
36							
37							
38							
39							
40							
41							
42							
43							
44					_ 1		
45							
46							
47							
48							
49					The second second		
50							

Appendix B
Analytical Results

The results of the mercury analysis of both stream and reservoir fish specimens are presented below.

STREAM SAMPLING RESULTS

The results of the mercury analysis of stream fish specimens are presented in Table B-1.

Table B-1. Stream Sampling Results

Lagation	Sample ID	Mercury	Mercury	Weight
Location Guadalupe River at Coleman Ave	Sample ID CB1R	(ng/g dw)	(ng/g ww) 46	(g) 2.4
Guadalupe River at Coleman Ave	CB2R	287	68.3	3.2
Guadalupe River at Coleman Ave	CB3R	270	77.6	1.8
Guadalupe River at Coleman Ave	CB5R	219	61	2.5
Guadalupe River at Coleman Ave	CB6R	287	71.8	4.0
Guadalupe River at Coleman Ave	CB7R	338	82.5	2.8
Guadalupe River at Coleman Ave	CB8R	139	38.3	1.2
Guadalupe River at Coleman Ave	CB9R	204	50.9	1.8
Guadalupe River at Coleman Ave	CB10R	247	55.5	3.6
Guadalupe River at Coleman Ave	CB11R	800	173	6.6
Guadalupe River at Coleman Ave	CB12R	458	115	7.2
Guadalupe River at Coleman Ave	CB13R	451	107	3.7
Guadalupe River at Coleman Ave	CB14R	277	74.3	1.2
Guadalupe River at Virginia Ave	VB1R	1130	268	2.5
Guadalupe River at Virginia Ave	VB2R	869	208	3.9
Guadalupe River at Virginia Ave	VB3R	1540	311	4.7
Guadalupe River at Virginia Ave	VB4R	903	247	1.8
Guadalupe River at Virginia Ave	VB5R	1160	318	11.8
Guadalupe River at Virginia Ave	VB6R	1470	249	3.4
Guadalupe River at Virginia Ave	VB7R	1580	295	6.4
Guadalupe River at Virginia Ave	VB8R	1490	336	7.4
Guadalupe River at Virginia Ave	VB9R	1000	220	2.8
Guadalupe River at Virginia Ave	VB10R	839	177	4.5
Guadalupe River at Virginia Ave	VB11R	1330	257	2.9
Guadalupe River at Virginia Ave	VB12R	926	230	3.0
Guadalupe Creek at Meridian Ave	GC1R	3430	711	18.5
Guadalupe Creek at Meridian Ave	GC2R	2240	523	3.3
Guadalupe Creek at Meridian Ave	GC3R	1720	439	4.9

Table B-1. Stream Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	Weight (g)
Guadalupe Creek at Meridian Ave	GC4R	2080	439	4.2
Guadalupe Creek at Meridian Ave	GC5R	2490	652	5.2
Guadalupe Creek at Meridian Ave	GC6R	2630	676	6.8
Guadalupe Creek at Meridian Ave	GC7R	2790	653	5.7
Guadalupe Creek at Meridian Ave	GC8R	2980	751	3.6
Guadalupe Creek at Meridian Ave	GC9R	2940	687	6.0
Guadalupe Creek at Meridian Ave	GC10R	1810	495	8.7
Guadalupe Creek at Meridian Ave	GC11R	2560	637	4.6
Guadalupe Creek at Meridian Ave	GC12R	2590	599	4.4
Guadalupe Creek at Meridian Ave	GC13R	2910	711	6.6
Guadalupe Creek at Meridian Ave	GC14R	1950	504	4.1
Guadalupe Creek at Meridian Ave	GC15R	2050	548	3.6
Guadalupe Creek at Meridian Ave	GC16R	2970	686	6.3
Alamitos Creek at Graystone Lane	GL1R	1430	321	6.5
Alamitos Creek at Graystone Lane	GL2R	1220	305	7.5
Alamitos Creek at Graystone Lane	GL3R	1670	393	7.4
Alamitos Creek at Graystone Lane	GL4R	1530	320	4.0
Alamitos Creek at Graystone Lane	GL5R	1380	353	1.9
Alamitos Creek at Graystone Lane	GL6R	2110	491	8.1
Alamitos Creek at Graystone Lane	GL7R	1200 J	270	4.5
Alamitos Creek at Graystone Lane	GL8R	2240	496	2.8
Alamitos Creek at Graystone Lane	GL9R	1050	266	2.5
Alamitos Creek at Graystone Lane	GL10R	957	267	2.9
Alamitos Creek at Graystone Lane	GL11R	2820	597	1.9
Alamitos Creek at Graystone Lane	GL12R	1090	260	3.3
Alamitos Creek at Graystone Lane	GL13R	1560	374	1.3
Alamitos Creek at Graystone Lane	GL14R	1130	290	2.2
Alamitos Creek at Graystone Lane	GL15R	1350	288	1.6
Alamitos Creek at Graystone Lane	GL16R	1280	380	3.4
Alamitos Creek at Graystone Lane	GL17R	1100	242	2.6
Alamitos Creek at Graystone Lane	GL18R	1600	371	1.4
Alamitos Creek at Graystone Lane	GL19R	1380	320	2.8

Table B-1. Stream Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	Weight (g)
Alamitos Creek at Graystone Lane	GL20R	1560	427	(g) 2.2
Alamitos Creek at Harry Road	HB1R	3320	798	1.5
Alamitos Creek at Harry Road	HB2R	2190	537	5.2
Alamitos Creek at Harry Road	HB3R	2130	592	3.3
Alamitos Creek at Harry Road	HB4R	2540	643	4.0
Alamitos Creek at Harry Road	HB5R	2360	582	2.5
Alamitos Creek at Harry Road	HB6R	2410	626	2.4
Alamitos Creek at Harry Road	HB7R	2380	604	1.6
Alamitos Creek at Harry Road	HB8R	1910	493	1.7
Alamitos Creek at Harry Road	HB9R	2980	751	2.1
Alamitos Creek at Harry Road	HB10R	1690	442	2.0
Alamitos Creek at Harry Road	HB11R	1860	506	1.7
Alamitos Creek at Harry Road	HB12R	2170	458	1.7
Alamitos Creek at Harry Road	HB13R	2010	456	2.5
Alamitos Creek at Harry Road	HB14R	2270	649	2.2
Alamitos Creek at Harry Road	HB15R	3400	601	2.9
Alamitos Creek at Harry Road	HB16R	1780 J	429	1.9
Alamitos Creek at Harry Road	HB17R	3040	829	2.5
Alamitos Creek at Harry Road	HB18R	2300	618	1.3
Alamitos Creek at Harry Road	HB19R	3630	726	1.5
Alamitos Creek at Harry Road	HB20R	2540	627	1.7

g = gram

ID = identification

ng/g dw = nanograms per gram dry weight

ng/g ww = nanogram per gram wet weight

RESERVOIR AND LAKE SAMPLING RESULTS

The results of the mercury analysis of reservoir fish specimens are presented in Table B-2.

Table B-2. Reservoir and Lake Sampling Results

		Mercury	Mercury	
Location	Sample ID	(ng/g dw)	(ng/g ww)	Weight (g)
Calero Reservoir	CR LMB 2	770	155	9.5
Calero Reservoir	CR LMB 3	281	58.6	9.7
Calero Reservoir	CR LMB 4	473	97.1	10.6
Calero Reservoir	CR LMB 5	417	79	8.1
Calero Reservoir	CR LMB 6	429	91.5	9.9
Calero Reservoir	CR LMB 7	715	144	9.8
Calero Reservoir	CR LMB 9	436	89.5	9.8
Calero Reservoir	CR LMB 10	688	150	10.0
Calero Reservoir	CR LMB 11	177	37.3	7.1
Calero Reservoir	CR LMB 12	461	95.2	4.3
Calero Reservoir	CR LMB 13	446	96	6.2
Calero Reservoir	CR LMB 14	280	61.4	8.4
Calero Reservoir	CR LMB 15	548	113	5.9
Calero Reservoir	CR LMB 19	324	68.4	6.2
Calero Reservoir	CR LMB 20	304	61.9	4.6
Calero Reservoir	CR LMB 21	248	52.3	3.8
Calero Reservoir	CR LMB 22	319	73	4.3
Calero Reservoir	CR LMB 24	215	45.3	4.5
Calero Reservoir	CR LMB 25	1310	289	8.2
Calero Reservoir	CR LMB 27	451	97.6	10.2
Lake Almaden	LA LMB 1	1640	379	9.1
Lake Almaden	LA LMB 3	1630	364	7.2
Lake Almaden	LA LMB 4	1840	399	5.1
Lake Almaden	LA LMB 6	1580	358	5.1
Lake Almaden	LA LMB 7	1640	357	4.4
Lake Almaden	LA LMB 8	1550	353	6.1
Lake Almaden	LA LMB 9	1920	428	8.4
Lake Almaden	LA LMB 10	1780	378	5.6
Lake Almaden	LA LMB 11	1850	412	7.2
Lake Almaden	LA LMB 12	1580	403	8.4

Table B-2. Reservoir and Lake Sampling Results

		Mercury	Mercury	
Location	Sample ID	(ng/g dw)	(ng/g ww)	Weight (g)
Lake Almaden	LA LMB 13	1880	412	6.2
Lake Almaden	LA LMB 14	1670	358	8.4
Lake Almaden	LA LMB 15	1730	370	7.9
Lake Almaden	LA LMB 16	1500	346	5.1
Lake Almaden	LA LMB 17	1700	379	9.7
Lake Almaden	LA LMB 18	1780	406	6.3
Lake Almaden	LA LMB 19	1610	349	6.2
Lake Almaden	LA LMB 20	1980	425	5.2
Lake Almaden	LA LMB 21	1570	355	6.2
Lake Almaden	LA LMB 22	1990	407	6.2
Almaden Reservoir	AR LMB 3	5830	1240	4.4
Almaden Reservoir	AR LMB 4	7620	1590	6.1
Almaden Reservoir	AR LMB 5	7730	1750	6.8
Almaden Reservoir	AR LMB 6	5880	1200	3.4
Almaden Reservoir	AR LMB 7	5350	1120	2.6
Almaden Reservoir	AR LMB 8	6570	1430	9.7
Almaden Reservoir	AR LMB 9	6410	1300	8.9
Almaden Reservoir	AR LMB 10	4680	1040	3.8
Almaden Reservoir	AR LMB 11	6200	1300	2.8
Almaden Reservoir	AR LMB 12	4850	1020	3.1
Almaden Reservoir	AR LMB 13	6110	1320	2.7
Almaden Reservoir	AR LMB 14	3830	795	3.2
Almaden Reservoir	AR LMB 15	5800	1220	2.6
Almaden Reservoir	AR LMB 16	4000	844	4.0
Almaden Reservoir	AR LMB 17	5200	1190	2.6
Almaden Reservoir	AR LMB 18	5640	1140	2.3
Almaden Reservoir	AR LMB 19	6700	1430	6.3
Almaden Reservoir	AR LMB 20	5210	1090	7.4
Almaden Reservoir	AR LMB 21	4950	1020	6.2
Almaden Reservoir	AR LMB 22	5870	1180	10.0
Guadalupe Reservoir	GR LMB 1	4280	901	9.3
Guadalupe Reservoir	GR LMB 2	4140	856	8.0

Table B-2. Reservoir and Lake Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	Weight (g)
Guadalupe Reservoir	GR LMB 3	2380	524	2.7
Guadalupe Reservoir	GR LMB 4	2900	657	8.7
Guadalupe Reservoir	GR LMB 5	4480	946	8.6
Guadalupe Reservoir	GR LMB 6	4190	846	9.5
Guadalupe Reservoir	GR LMB 13	3990	843	7.0
Guadalupe Reservoir	GR LMB 15	2910	674	3.0
Guadalupe Reservoir	GR LMB 23	3010 J	656	3.2
Guadalupe Reservoir	GR LMB 24	3980	800	4.2
Guadalupe Reservoir	GR BG 7	2200	508	8.0
Guadalupe Reservoir	GR BG 9	1890	454	4.7
Guadalupe Reservoir	GR BG 10	1780	415	6.2
Guadalupe Reservoir	GR BG 11	2820	628	5.1
Guadalupe Reservoir	GR BG 12	2350	605	8.4
Guadalupe Reservoir	GR BG 17	2470	599	5.5
Guadalupe Reservoir	GR BG 19	2610	601	4.2
Guadalupe Reservoir	GR BG 20	2040	486	3.8
Guadalupe Reservoir	GR BG 21	2210	457	4.0
Guadalupe Reservoir	GR BG 25	1830	437	6.0

g = gram

ID = identification

ng/g dw = nanograms per gram dry weight

ng/g ww = nanogram per gram wet weight

Appendix C Laboratory Reports and QA-QC Memo

URS

Memorandum

Date: November 16, 2012

To: Mike Carbiener and Terry Cooke

From: Elizabeth Nielsen

Subject: QA/QC Evaluation for the Guadalupe River Watershed 2012 Fish Sampling for the Year 2 Interim

Report

Data associated with the fish sampling in the Guadalupe River watershed during June and July 2012 have been evaluated for quality assurance and quality control (QA/QC) in accordance with EPA guidelines. This memorandum is a review of the data reported by the Brooks Rand Labs on October 23rd for BRL Reports 1232029 and 1232030. These data were reviewed for the QA/QC elements of precision, accuracy, reporting limits, and contamination.

The QA/QC parameters reviewed during data evaluation include the following.

- Holding Times Holding times were checked to see if they were in excess of EPA guidelines. Holding times were calculated using analysis date, preparation date, and/or test date in relation to sampling date.
- Method Blanks Blank analyses were reviewed for evidence of potential contamination.
- Laboratory Control Samples or Certified Reference Materials- Spike recoveries were reviewed as a
 check for analytical accuracy.
- Matrix Spikes (MS) Spike recoveries and relative percent differences (RPDs) were reviewed as a check for analytical precision and accuracy.
- Laboratory Duplicates RPDs were reviewed as a check for analytical precision.

The following EPA qualifications were used when deemed necessary for inorganic results.

- "U" The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- "J" The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- . "J+" The result is an estimated quantity, but the result may be biased high.
- "J-" The result is an estimated quantity, but the result may be biased low.
- "UJ" The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- "R" The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.

Below is a brief discussion of each QA/QC element reviewed and the relevant findings.

Requested Analysis

Tables A-1 and A-2 list each of the tissue samples requested for analysis and the requested parameters. All of the requested analyses were reported.

Sample Handling:

Stream and reservoir fish samples were received by Brooks Rand Labs on August 9th on dry ice with the exception of AR LMB 8, AR LMB 9, AR LMB 20 and AR LMB 22. These samples were received by the laboratory on August 29th. Samples were received frozen, in good condition and under chain of custody (COC). Upon receipt at the laboratory, cooler temperature was -11°C for initial shipment and 1.2°C for the second shipment. No sampling handing problems were identified.

Holding Times

Recommended hold times for mercury and in biota is 1 year when frozen. All samples were analyzed within recommended holding times.

Method Blanks

Method blanks consist of clean laboratory matrix that is carried through each step of the analysis with the environmental samples for each parameter. Four method blanks were analyzed for each mercury analytical batch and two method blanks were analyzed for each percent total solids analytical batch. The averages for each of these series of blanks were less than the method detection limit. The absolute values of the average of the blanks were less than the reporting limit. All method blanks were less than the reporting limit for target analytes.

Sample results were blank corrected.

Laboratory Control Samples or Certified Reference Materials

Certified reference material spikes (or blank spikes) are well-characterized, laboratory-generated samples used to monitor the laboratory's day-to-day performance for analyses and assess the accuracy of the analytical process independent of matrix effects. All recoveries were within laboratory generated control limits.

Matrix Spikes

MS/MSD samples are analyzed to evaluate matrix interference for an analytical batch and to assess accuracy and precision. All MS/MSD recoveries and RPDs were within laboratory generated control limits.

Laboratory Duplicates

Duplicate samples are analyzed as a check on the precision of the analytical process. RPDs were within laboratory generated control limits with the exception of GL7R, HB16R and GR LMB 23 for percent total solids. Percent total solids are used to calculate the dry weight mercury results. Because of the uncertainty associated with the percent solids determination, the mercury results reported in dry weight for GL7R, HB16R and GR LMB 23 were qualified as estimated and flagged "J".

Summary

The data reviewed are of acceptable precision and accuracy with the following qualifications.

The mercury results reported in dry weight for GL7R, HB16R and GR LMB 23 were qualified as
estimated and flagged "J" as a result of the uncertainty associated with duplicate analysis in percent
solids.

Attachment A - Analytical Results

Table A-1. Stream Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total Solids	Weight, Field Analysis (g)
Guadalupe River at Coleman Ave	CB1R	173	46	26.6	2.4
Guadalupe River at Coleman Ave	CB2R	287	68.3	23.8	3.2
Guadalupe River at Coleman Ave	CB3R	270	77.6	28.7	1.8
Guadalupe River at Coleman Ave	CB5R	219	61	27.9	2.5
Guadalupe River at Coleman Ave	CB6R	287	71.8	25.0	4.0
Guadalupe River at Coleman Ave	CB7R	338	82.5	24.4	2.8
Guadalupe River at Coleman Ave	CB8R	139	38.3	27.6	1.2
Guadalupe River at Coleman Ave	CB9R	204	50.9	25.0	1.8
Guadalupe River at Coleman Ave	CB10R	247	55.5	22.4	3.6
Guadalupe River at Coleman Ave	CB11R	800	173	21.7	6.6
Guadalupe River at Coleman Ave	CB12R	458	115	25.2	7.2
Guadalupe River at Coleman Ave	CB13R	451	107	23.7	3.7
Guadalupe River at Coleman Ave	CB14R	277	74.3	26.9	1.2
Guadalupe River at Virginia Ave	VB1R	1130	268	23.7	2.5
Guadalupe River at Virginia Ave	VB2R	869	208	24.0	3.9
Guadalupe River at Virginia Ave	VB3R	1540	311	20.1	4.7
Guadalupe River at Virginia Ave	VB4R	903	247	27.3	1.8
Guadalupe River at Virginia Ave	VB5R	1160	318	27.5	11.8
Guadalupe River at Virginia Ave	VB6R	1470	249	17.0	3.4
Guadalupe River at Virginia Ave	VB7R	1580	295	18.7	6.4
Guadalupe River at Virginia Ave	VB8R	1490	336	22.6	7.4
Guadalupe River at Virginia Ave	VB9R	1000	220	21.9	2.8
Guadalupe River at Virginia Ave	VB10R	839	177	21.1	4.5
Guadalupe River at Virginia Ave	VB11R	1330	257	19.3	2.9
Guadalupe River at Virginia Ave	VB12R	926	230	24.9	3.0
Guadalupe Creek at Meridian Ave	GC1R	3430	711	20.8	18.5
Guadalupe Creek at Meridian Ave	GC2R	2240	523	23.3	3.3
Guadalupe Creek at Meridian Ave	GC3R	1720	439	25.5	4.9
Guadalupe Creek at Meridian Ave	GC4R	2080	439	21.1	4.2

Table A-1. Stream Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total Solids	Weight, Field Analysis (g)
Guadalupe Creek at Meridian Ave	GC5R	2490	652	26.2	5.2
Guadalupe Creek at Meridian Ave	GC6R	2630	676	25.7	6.8
Guadalupe Creek at Meridian Ave	GC7R	2790	653	23.4	5.7
Guadalupe Creek at Meridian Ave	GC8R	2980	751	25.2	3.6
Guadalupe Creek at Meridian Ave	GC9R	2940	687	23.4	6.0
Guadalupe Creek at Meridian Ave	GC10R	1810	495	27.4	8.7
Guadalupe Creek at Meridian Ave	GC11R	2560	637	24.9	4.6
Guadalupe Creek at Meridian Ave	GC12R	2590	599	23.1	4.4
Guadalupe Creek at Meridian Ave	GC13R	2910	711	24.4	6.6
Guadalupe Creek at Meridian Ave	GC14R	1950	504	25.8	4.1
Guadalupe Creek at Meridian Ave	GC15R	2050	548	26.7	3.6
Guadalupe Creek at Meridian Ave	GC16R	2970	686	23.1	6.3
Alamitos Creek at Graystone Lane	GL1R	1430	321	22.5	6.5
Alamitos Creek at Graystone Lane	GL2R	1220	305	25.0	7.5
Alamitos Creek at Graystone Lane	GL3R	1670	393	23.6	7.4
Alamitos Creek at Graystone Lane	GL4R	1530	320	20.9	4.0
Alamitos Creek at Graystone Lane	GL5R	1380	353	25.6	1.9
Alamitos Creek at Graystone Lane	GL6R	2110	491	23.2	8.1
Alamitos Creek at Graystone Lane	GL7R	1200 J	270	22.5 J	4.5
Alamitos Creek at Graystone Lane	GL8R	2240	496	22.1	2.8
Alamitos Creek at Graystone Lane	GL9R	1050	266	25.3	2.5
Alamitos Creek at Graystone Lane	GL10R	957	267	28.0	2.9
Alamitos Creek at Graystone Lane	GL11R	2820	597	21.2	1.9
Alamitos Creek at Graystone Lane	GL12R	1090	260	23.9	3.3
Alamitos Creek at Graystone Lane	GL13R	1560	374	24.0	1.3
Alamitos Creek at Graystone Lane	GL14R	1130	290	25.5	2.2
Alamitos Creek at Graystone Lane	GL15R	1350	288	21.4	1.6
Alamitos Creek at Graystone Lane	GL16R	1280	380	29.6	3.4
Alamitos Creek at Graystone Lane	GL17R	1100	242	21.9	2.6
Alamitos Creek at Graystone Lane	GL18R	1600	371	23.2	1.4

Table A-1. Stream Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total Solids	Weight, Field Analysis (g)
Alamitos Creek at Graystone Lane	GL19R	1380	320	23.3	2.8
Alamitos Creek at Graystone Lane	GL20R	1560	427	27.4	2.2
Alamitos Creek at Harry Road	HB1R	3320	798	24.0	1.5
Alamitos Creek at Harry Road	HB2R	2190	537	24.5	5.2
Alamitos Creek at Harry Road	HB3R	2130	592	27.8	3.3
Alamitos Creek at Harry Road	HB4R	2540	643	25.3	4.0
Alamitos Creek at Harry Road	HB5R	2360	582	24.7	2.5
Alamitos Creek at Harry Road	HB6R	2410	626	25.9	2.4
Alamitos Creek at Harry Road	HB7R	2380	604	25.4	1.6
Alamitos Creek at Harry Road	HB8R	1910	493	25.8	1.7
Alamitos Creek at Harry Road	HB9R	2980	751	25.2	2.1
Alamitos Creek at Harry Road	HB10R	1690	442	26.2	2.0
Alamitos Creek at Harry Road	HB11R	1860	506	27.1	1.7
Alamitos Creek at Harry Road	HB12R	2170	458	21.1	1.7
Alamitos Creek at Harry Road	HB13R	2010	456	22.7	2.5
Alamitos Creek at Harry Road	HB14R	2270	649	28.6	2.2
Alamitos Creek at Harry Road	HB15R	3400	601	17.7	2.9
Alamitos Creek at Harry Road	HB16R	1780 J	429	24.2 J	1.9
Alamitos Creek at Harry Road	HB17R	3040	829	27.2	2.5
Alamitos Creek at Harry Road	HB18R	2300	618	26.9	1.3
Alamitos Creek at Harry Road	HB19R	3630	726	20.0	1.5
Alamitos Creek at Harry Road	HB20R	2540	627	24.7	1.7

g = gram

ID = identification

ng/g dw = nanograms per gram dry weight

ng/g ww = nanogram per gram wet weight

Table A-2. Reservoir and Lake Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total Solids	Weight, Field Analysis (g)
Calero Reservoir	CR LMB 2	770	155	20.1	9.5
Calero Reservoir	CR LMB 3	281	58.6	20.8	9.7
Calero Reservoir	CR LMB 4	473	97.1	20.5	10.6
Calero Reservoir	CR LMB 5	417	79	18.9	8.1
Calero Reservoir	CR LMB 6	429	91.5	21.3	9.9
Calero Reservoir	CR LMB 7	715	144	20.2	9.8
Calero Reservoir	CR LMB 9	436	89.5	20.5	9.8
Calero Reservoir	CR LMB 10	688	150	21.8	10.0
Calero Reservoir	CR LMB 11	177	37.3	21.1	7.1
Calero Reservoir	CR LMB 12	461	95.2	20.6	4.3
Calero Reservoir	CR LMB 13	446	96	21.5	6.2
Calero Reservoir	CR LMB 14	280	61.4	22.0	8.4
Calero Reservoir	CR LMB 15	548	113	20.6	5.9
Calero Reservoir	CR LMB 19	324	68.4	21.1	6.2
Calero Reservoir	CR LMB 20	304	61.9	20.4	4.6
Calero Reservoir	CR LMB 21	248	52.3	21.0	3.8
Calero Reservoir	CR LMB 22	319	73	22.9	4.3
Calero Reservoir	CR LMB 24	215	45.3	21.1	4.5
Calero Reservoir	CR LMB 25	1310	289	22.0	8.2
Calero Reservoir	CR LMB 27	451	97.6	21.6	10.2
Lake Almaden	LA LMB 1	1640	379	23.1	9.1
Lake Almaden	LA LMB 3	1630	364	22.3	7.2
Lake Almaden	LA LMB 4	1840	399	21.7	5.1
Lake Almaden	LA LMB 6	1580	358	22.7	5.1
Lake Almaden	LA LMB 7	1640	357	21.7	4.4
Lake Almaden	LA LMB 8	1550	353	22.7	6.1
Lake Almaden	LA LMB 9	1920	428	22.3	8.4
Lake Almaden	LA LMB 10	1780	378	21.2	5.6
Lake Almaden	LA LMB 11	1850	412	22.2	7.2
Lake Almaden	LA LMB 12	1580	403	25.6	8.4

Table A-2. Reservoir and Lake Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total	Weight, Field Analysis (g)
Lake Almaden	LA LMB 13	1880	412	22.0	6.2
Lake Almaden	LA LMB 14	1670	358	21.5	8.4
Lake Almaden	LA LMB 15	1730	370	21.4	7.9
Lake Almaden	LA LMB 16	1500	346	23.0	5.1
Lake Almaden	LA LMB 17	1700	379	22.2	9.7
Lake Almaden	LA LMB 18	1780	406	22.8	6.3
Lake Almaden	LA LMB 19	1610	349	21.7	6.2
Lake Almaden	LA LMB 20	1980	425	21.4	5.2
Lake Almaden	LA LMB 21	1570	355	22.7	6.2
Lake Almaden	LA LMB 22	1990	407	20.4	6.2
Almaden Reservoir	AR LMB 3	5830	1240	21.2	4.4
Almaden Reservoir	AR LMB 4	7620	1590	20.9	6.1
Almaden Reservoir	AR LMB 5	7730	1750	22.7	6.8
Almaden Reservoir	AR LMB 6	5880	1200	20.4	3.4
Almaden Reservoir	AR LMB 7	5350	1120	21.0	2.6
Almaden Reservoir	AR LMB 8	6570	1430	21.8	9.7
Almaden Reservoir	AR LMB 9	6410	1300	20.3	8.9
Almaden Reservoir	AR LMB 10	4680	1040	22.1	3.8
Almaden Reservoir	AR LMB 11	6200	1300	20.9	2.8
Almaden Reservoir	AR LMB 12	4850	1020	21.0	3.1
Almaden Reservoir	AR LMB 13	6110	1320	21.7	2.7
Almaden Reservoir	AR LMB 14	3830	795	20.8	3.2
Almaden Reservoir	AR LMB 15	5800	1220	21.1	2.6
Almaden Reservoir	AR LMB 16	4000	844	21.1	4.0
Almaden Reservoir	AR LMB 17	5200	1190	22.9	2.6
Almaden Reservoir	AR LMB 18	5640	1140	20.2	2.3
Almaden Reservoir	AR LMB 19	6700	1430	21.3	6.3
Almaden Reservoir	AR LMB 20	5210	1090	20.9	7.4
Almaden Reservoir	AR LMB 21	4950	1020	20.6	6.2
Almaden Reservoir	AR LMB 22	5870	1180	20.1	10.0

Table A-2. Reservoir and Lake Sampling Results

Location	Sample ID	Mercury (ng/g dw)	Mercury (ng/g ww)	% Total Solids	Weight, Field Analysis (g
Guadalupe Reservoir	GR LMB 1	4280	901	21.1	9.3
Guadalupe Reservoir	GR LMB 2	4140	856	20.7	8.0
Guadalupe Reservoir	GR LMB 3	2380	524	22.0	2.7
Guadalupe Reservoir	GR LMB 4	2900	657	22.6	8.7
Guadalupe Reservoir	GR LMB 5	4480	946	21.1	8.6
Guadalupe Reservoir	GR LMB 6	4190	846	20.2	9.5
Guadalupe Reservoir	GR LMB 13	3990	843	21.1	7.0
Guadalupe Reservoir	GR LMB 15	2910	674	23.2	3.0
Guadalupe Reservoir	GR LMB 23	3010 J	656	21.8 J	3.2
Guadalupe Reservoir	GR LMB 24	3980	800	20.1	4.2
Guadalupe Reservoir	GR BG 7	2200	508	23.1	8.0
Guadalupe Reservoir	GR BG 9	1890	454	24.1	4.7
Guadalupe Reservoir	GR BG 10	1780	415	23.3	6.2
Guadalupe Reservoir	GR BG 11	2820	628	22.3	5.1
Guadalupe Reservoir	GR BG 12	2350	605	25.8	8.4
Guadalupe Reservoir	GR BG 17	2470	599	24.3	5.5
Guadalupe Reservoir	GR BG 19	2610	601	23.0	4.2
Guadalupe Reservoir	GR BG 20	2040	486	23.8	3.8
Guadalupe Reservoir	GR BG 21	2210	457	20.7	4.0
Guadalupe Reservoir	GR BG 25	1830	437	23.9	6.0

g = gram ID = identification

ng/g dw = nanograms per gram dry weight

ng/g ww = nanogram per gram wet weight

Appendix D
Statistical Results

STATISTICAL RESULTS

The results of the statistical analysis are presented below.

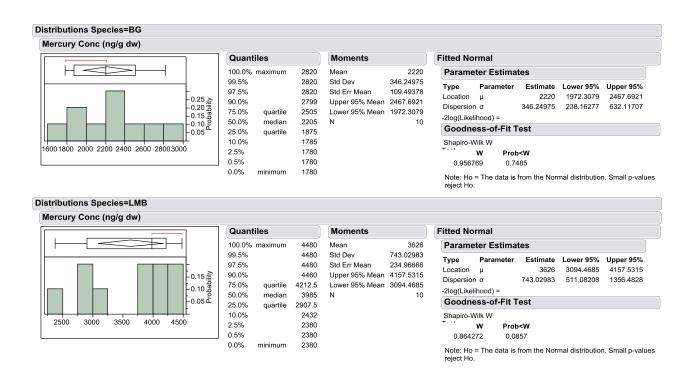


Figure D-1. Distribution of Mercury by Species in Guadalupe Reservoir Samples

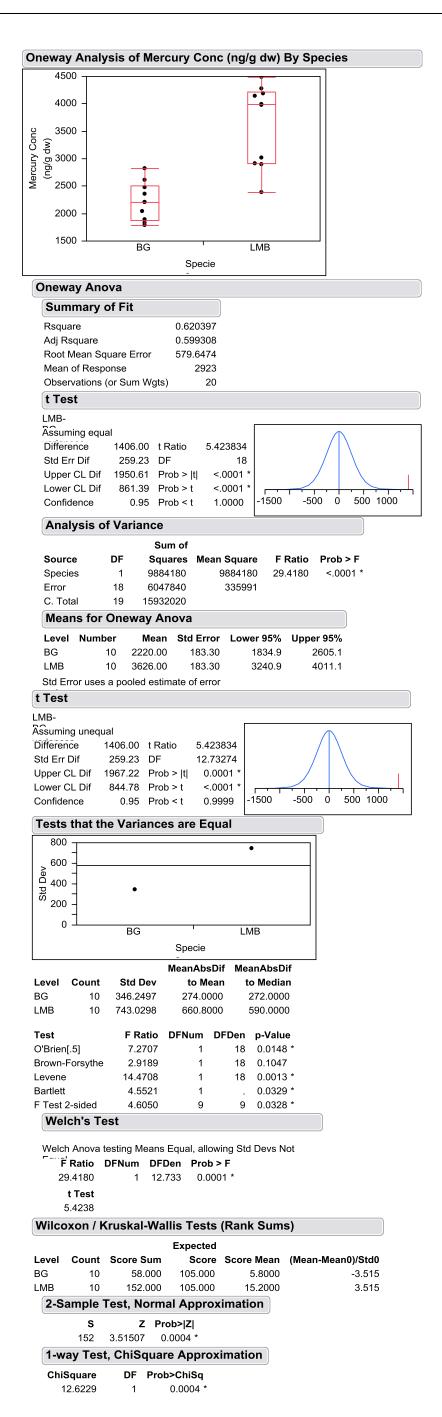


Figure D-2. Oneway Anova Test of Mercury by Species in Guadalupe Reservoir Samples

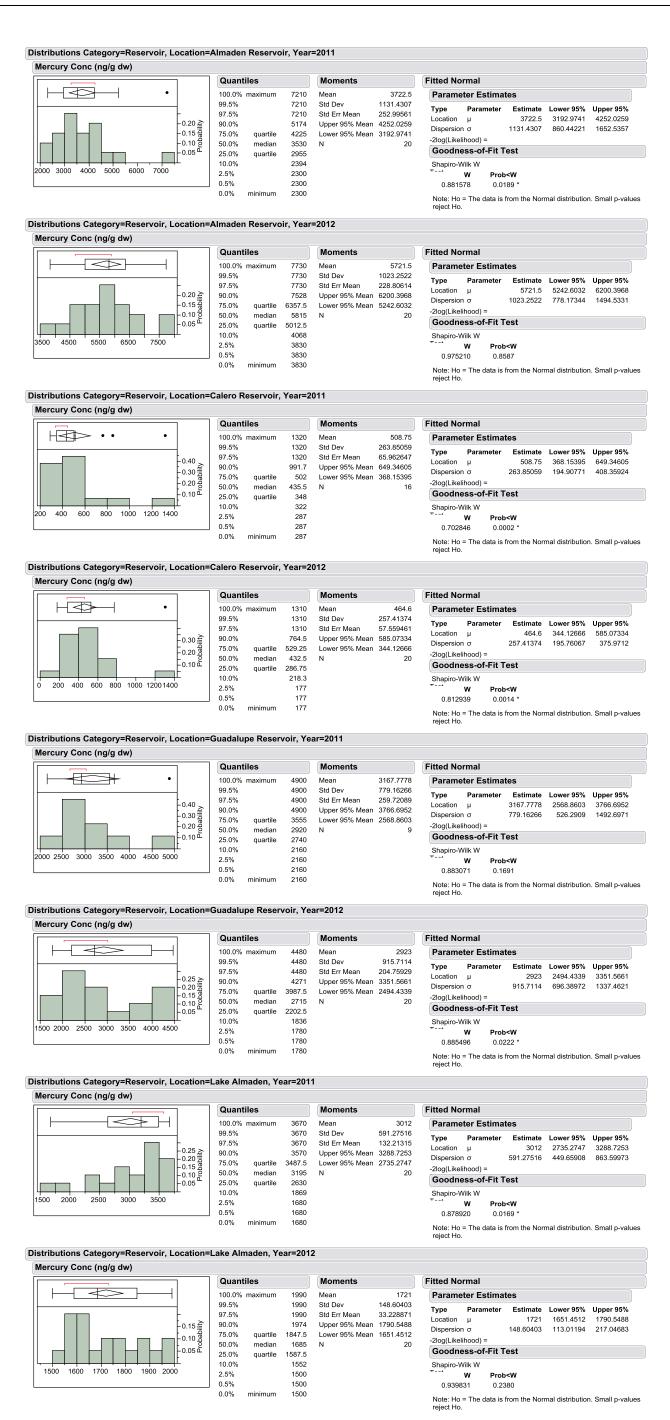


Figure D-3. Distribution of Mercury by Reservoir Location and Year

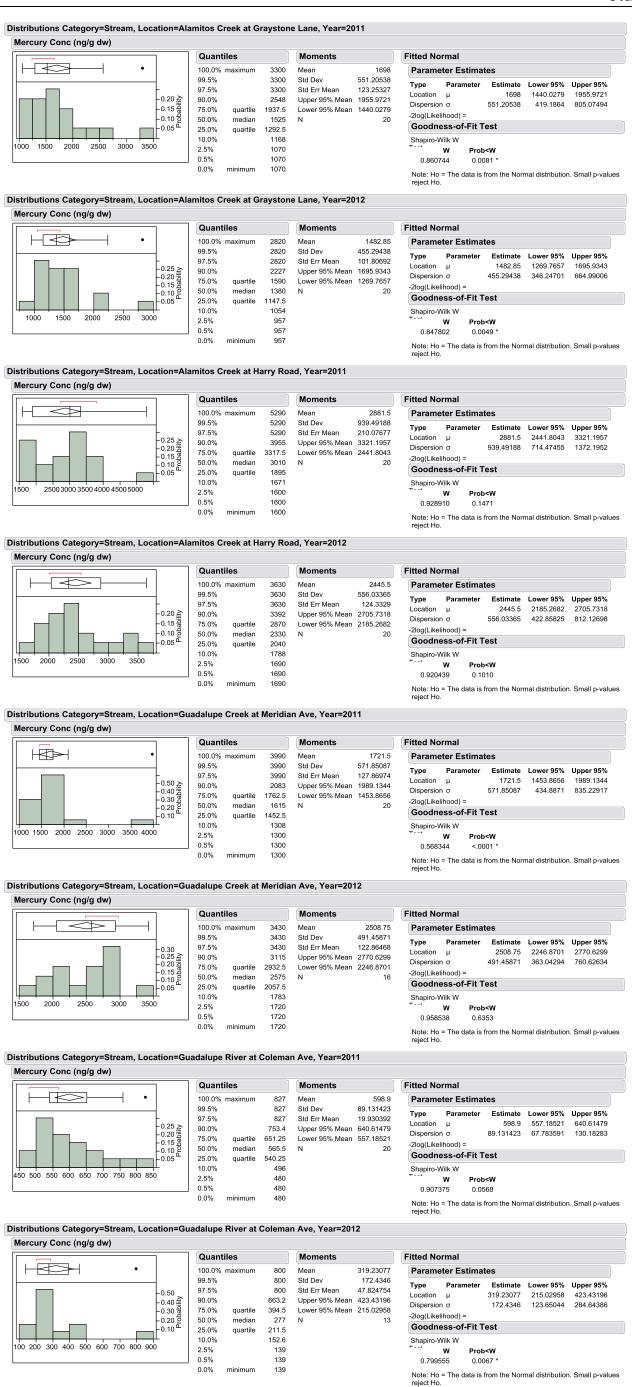


Figure D-4. Distribution of Mercury by Stream Location and Year

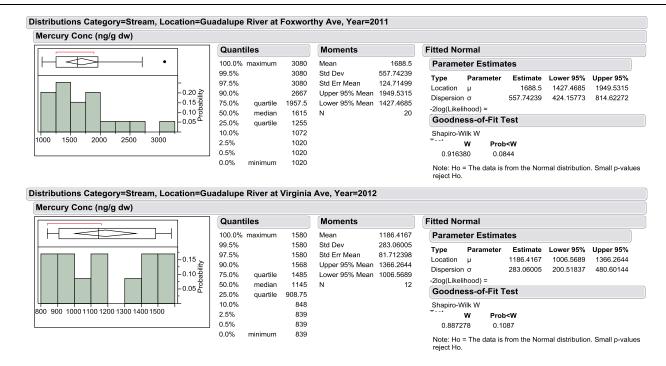


Figure D-4. Distribution of Mercury by Stream Location and Year (cont.)

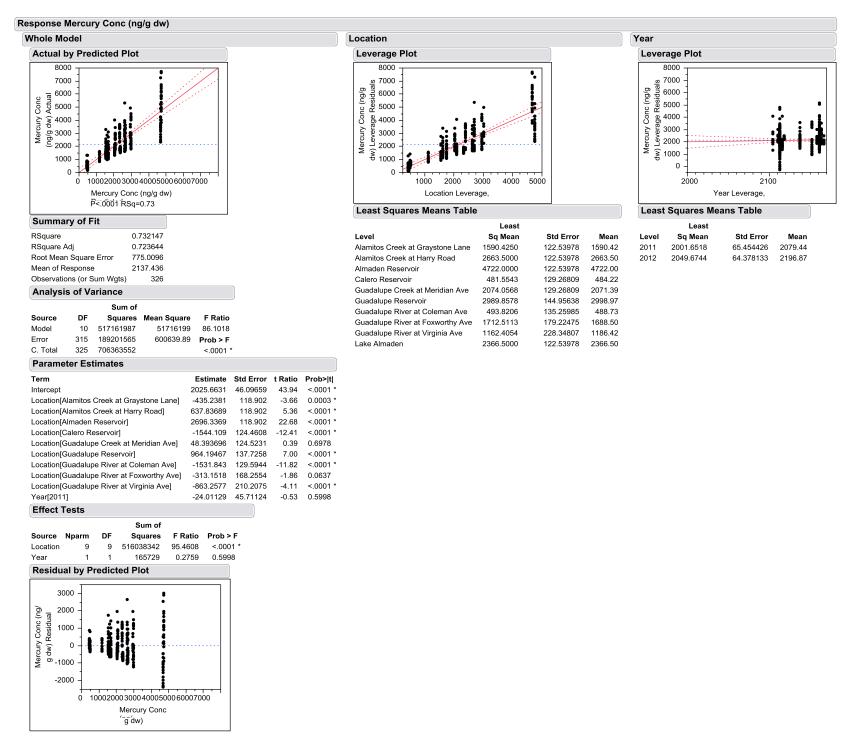


Figure D-5. Twoway Anova Test of Mercury by Location and Year

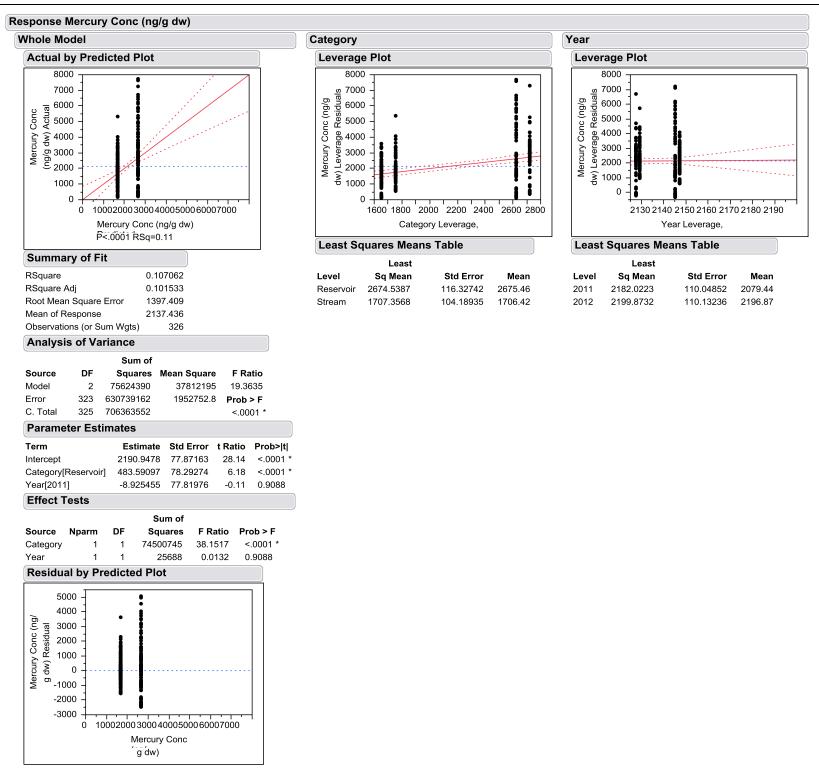


Figure D-6. Twoway Anova Test of Mercury by Category (Stream v. Reservoir) and Year