Expedited Purified Water Program Technical Workshop for Shortlisted P3 Entities
June 6, 2018
Agenda

1. Welcome
2. Overview: Many Studies and Efforts
4. Program Elements: Indirect Potable Reuse
5. Program Development – Supporting Studies
6. Status of Capital Programs at Wastewater Facilities
7. Countywide Water Reuse Master Plan
8. Forming Partnerships
9. Program Environmental Documentation/Permitting
10. Program Plan B
11. Other
12. Next Steps
1. Welcome

Santa Clara Water District Serves:

- **2 million** people
- **15** cities
- **4,700** well owners
- **13** water retailers
A Comprehensive Mission

Providing Silicon Valley safe, clean water for a healthy life, environment and economy

CLEAN, RELIABLE WATER
FLOOD PROTECTION
HEALTHY CREEKS & ECOSYSTEMS
Meeting Silicon Valley’s Water Needs
Water Supply from Imported Sources and Local Reservoirs Intricately Connected in County

- 10 reservoirs
- 3 pump stations
- 142 miles of pipelines
- 3 water treatment plants
- 1 advanced purification plant
- 393 acres of recharge ponds
- 275 miles of jurisdictional streams
Diversified Portfolio for a Reliable Supply

Imported water

Local surface & groundwater

Conservation

Recycled Water
10 Local Reservoirs
400+ Acres Groundwater Recharge Ponds
Evolution of Treatment Capabilities
Surface Water Treatment (1967) to Reuse (2014)

40 MGD

100 MGD

80 MGD

8 MGD
Integrated Operations Requires Flexibility

• Imported water and local water supply recharge ponds and treatment plants
• Close coordination essential
 ▪ WTP flows fluctuate by 25 MGD daily
 ▪ Recharge ponds absorb fluctuations
 ▪ Daily adjustments by field operators
• Flexibility is key to system operation
• Potable Reuse water - integral to District system and water supply operations
Drought Conditions 2013-2016
Drive Urgency for Additional Action

- Drought realities
- Economic impacts
- Land subsidence risk
Expedited Purified Water Program

- Turning up to 45,000 acre-feet a year of what normally goes to San Francisco Bay into drinking water
- Delivering ~ $1B of advanced treatment technology, pipelines and injection well facilities
2. Overview: Many Studies and Efforts

Purified Water Program (2015 –)
- Program Planning
- Outreach
- Supporting Studies
 - Water System Operations Modeling
 - Groundwater Modeling
 - Procurement Analysis
 - Preliminary Engineering
 - Monitoring Wells
 - Private Activity
- Partnership Development
 - Palo Alto/Mt View
 - Sunnyvale
 - SFPUC/BAWSCA
 - RO Concentrate Management Plan
 - 2017 Water Supply Master Plan Update

Countywide Water Reuse Master Plan (2017 –)
- Cost Development
- Wastewater Availability
- Ecosystem Impacts
- Infrastructure
- Governance
- Financing
- Other
3. Water Resources Planning Context

• Diversity of sources
• Numerous options
 ▪ Local
 ▪ Regional
 ▪ State
• Potable reuse is one of the potential building blocks
2012 Water Supply and Infrastructure Master Plan

“Ensure Sustainability” strategy has three elements:

<table>
<thead>
<tr>
<th>Secure Existing System</th>
<th>Optimize the Existing System</th>
<th>Expand Recycling and Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dam retrofits</td>
<td>• Additional recharge capacity</td>
<td></td>
</tr>
<tr>
<td>• Pipeline restoration</td>
<td>• Additional raw water pipelines</td>
<td></td>
</tr>
<tr>
<td>• Imported, local, and recycled water</td>
<td>• Reoperations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 99,000 acre-feet per year of conservation savings by 2030</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graywater rebate program</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Potable reuse at Los Gatos Ponds</td>
<td></td>
</tr>
</tbody>
</table>
Project Yield, Costs, and Risk Levels Vary

<table>
<thead>
<tr>
<th>Project</th>
<th>Average Annual Yield (AFY)</th>
<th>District Lifecycle Cost (present value, 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California WaterFix</td>
<td>41,000</td>
<td>$620 million</td>
</tr>
<tr>
<td>Dry Year Options/Transfers</td>
<td>2,000</td>
<td>$100 million</td>
</tr>
<tr>
<td>Groundwater Banking</td>
<td>2,000</td>
<td>$60 million</td>
</tr>
<tr>
<td>Groundwater Recharge</td>
<td>1,000 – 2,000</td>
<td>$20 million - $50 million</td>
</tr>
<tr>
<td>Lexington Pipeline</td>
<td>3,000</td>
<td>$90 million</td>
</tr>
<tr>
<td>Los Vaqueros¹</td>
<td>3,000</td>
<td>$40 million</td>
</tr>
<tr>
<td>Pacheco Reservoir¹</td>
<td>6,000</td>
<td>$450 million</td>
</tr>
<tr>
<td>Potable Reuse - Ford Pond</td>
<td>3,000</td>
<td>$300 million</td>
</tr>
<tr>
<td>Potable Reuse – Injection Wells</td>
<td>12,000</td>
<td>$1.18 billion</td>
</tr>
<tr>
<td>Potable Reuse - Los Gatos Ponds</td>
<td>19,000</td>
<td>$1.22 billion</td>
</tr>
<tr>
<td>Sites Reservoir¹</td>
<td>8,000</td>
<td>$170 million</td>
</tr>
<tr>
<td>Water Contract Purchase</td>
<td>12,000</td>
<td>$360 million</td>
</tr>
</tbody>
</table>

1. Assumes Prop 1 Water Storage Investment Program funding. Costs would roughly double without funding.
Different Projects Meet Different Objectives

<table>
<thead>
<tr>
<th>Project</th>
<th>Secure Existing Supplies</th>
<th>Reduce Reliance on Delta</th>
<th>Water Use Efficiency</th>
<th>Groundwater Quality</th>
<th>Treated Water Quality</th>
<th>Minimize Costs</th>
<th>District Control</th>
<th>Minimize Implementation Phasing</th>
<th>Adapts to Climate Change</th>
<th>Provide ecosystem benefits</th>
<th>Reduce GHG Emissions</th>
<th>Environmental Justice</th>
<th>Recreation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Regrets</td>
<td>✓</td>
</tr>
<tr>
<td>California WaterFix</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dry Year Options/Transfers</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Groundwater Banking</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Groundwater Recharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lexington Pipeline</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Los Vaqueros Reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pacheco Reservoir</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potable Reuse-Ford Pond</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potable Reuse – Injection Wells</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Potable Reuse – Los Gatos Ponds</td>
<td>✓</td>
</tr>
<tr>
<td>Sites Reservoir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Water Contract Purchase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
“Approved for Planning” Projects Achieve Reliability Goal and are Consistent with 2012 WSIMP Strategy

<table>
<thead>
<tr>
<th>California WaterFix</th>
<th>“No Regrets” Package</th>
<th>Potable Reuse</th>
</tr>
</thead>
</table>
| • Secures existing Delta-conveyed imported water supplies
• Addresses regulatory, seismic, and climate risks
• Maintains water quality | • New and expanded water conservation and efficiency programs
• Centralized stormwater
• Decentralized stormwater | • Up to 24,000 acre-feet per year at Los Gatos Ponds
• Full advanced treatment protects groundwater quality
• Utilization rate needs optimization |
Different strategies meet reliability goal

<table>
<thead>
<tr>
<th>Category</th>
<th>Cost (in Billion)</th>
<th>Projects/Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Planning</td>
<td>$2.0 Billion</td>
<td>California WaterFix, Potable Reuse at Los Gatos Ponds</td>
</tr>
<tr>
<td>Local Flexibility</td>
<td>$2.9 Billion</td>
<td>Potable Reuse at Los Gatos Ponds, Potable Reuse with Injection Wells, Potable Reuse at Ford Pond, Lexington Pipeline, Saratoga Recharge</td>
</tr>
<tr>
<td>Regional Flexibility</td>
<td>$1.7 Billion*</td>
<td>Los Gatos Potable Reuse, Lexington Pipeline, Saratoga Recharge, Los Vaqueros Reservoir, Groundwater Banking</td>
</tr>
<tr>
<td>Local Storage</td>
<td>$1.3 Billion*</td>
<td>California WaterFix, Pacheco Reservoir, Groundwater Banking</td>
</tr>
<tr>
<td>Regional Storage</td>
<td>$840 million*</td>
<td>California WaterFix, Los Vaqueros Reservoir, Groundwater Banking</td>
</tr>
<tr>
<td>Statewide Storage</td>
<td>$910 million*</td>
<td>California WaterFix, Sites Reservoir</td>
</tr>
</tbody>
</table>

*Assumes Prop 1 Water Storage Investment Program Funding.
4. Program Elements: Indirect Potable Reuse

- SJ/SC RWF
- Expanded SVWPC
- Purified Water Pump Station and Pipeline
- Los Gatos Ponds
Recommended Project Components

- 24,000 AFY new facility adjacent to SVAWPC
- ~18 miles of 48” pipeline
- Modifications at Los Gatos Ponds
Alternative Selected Due to:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alternative 1 – IPR to Los Gatos Ponds Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Cost ($/AF)</td>
<td>Among the lowest unit cost of evaluated alternatives</td>
</tr>
<tr>
<td>Expandability</td>
<td>High expandability potential with future delivery points to injection wells; a connection with Sunnyvale/Palo Alto/Mt. View; and DPR to either Central Pipeline or Vasona Pump Station (feed to Rinconada WTP)</td>
</tr>
<tr>
<td>Regulatory Certainty</td>
<td>Regulations in place and several similar projects in operation</td>
</tr>
<tr>
<td>Implementation</td>
<td>Timeline well established due to established regulations; no need for additional research and/or demonstration</td>
</tr>
</tbody>
</table>
Future Opportunities

- Further Expansion of SVAWPC to serve:
 - IPR for Injection Wells
 - DPR Connection to Central Pipeline or Vasona Pump Station (feed to Rinconada WTP)

- Ford Advanced Water Purification Facility (AWPF): IPR to Ford Ponds

- System integration opportunities for cities of San Jose, Sunnyvale, and Palo Alto/Mountain View
The “Expanded” SVAWPC – 24 mgd Production

- SJ/SC RWF
- Expanded SVAWPC
- Purified Water Pump Station and Pipeline
- Los Gatos Ponds
Site for Expanded SVAWPC (yellow shading)
• Proposed site area adequate for:
 ▪ 24 mgd production
 ▪ 10 mgd future expansion production
• Full Advanced Treatment is required:
 ▪ Protects groundwater basin
 ▪ Supports future potable reuse options (e.g., injection wells)
• Source water can be secondary or tertiary effluent
• RO concentrate management under evaluation
• A draft Engineering Report for Division of Drinking Water completed in 2018
Pump Station & Pipeline

- SJ/SC RWF
- Expanded SVAWPC
- Purified Water Pump Station and Pipeline
- Los Gatos Ponds
Pump Station – Preliminary Layout
5 Alignments Considered

- 17.6 to 21.4 miles in length
- Narrowed alignments from 5 to 3 to 1
- Environmental considerations
- Constructability and linkage to schedule for other components
Factors in Identifying Preliminary Alignments

1. Minimize property acquisition
2. Available Caltrans crossings
3. Avoided Santa Clara County expressways
4. Avoided being in street with PG&E high pressure gas mains, jet fuel pipelines, railroads and light rail
5. Public disruption (traffic)
6. High-level geotechnical data
7. Environmental and permitting requirements
8. Minimize pipeline length
9. Minimize trenchless crossings
10. Maintenance requirements
11. Assess constructability and construction duration

Weighted scores resulted in carrying Alignments 3, 4 and 5 forward
Additional Refinement

- Alignment 3 eliminated due to anticipated creek/levee permitting restrictions and constructability issues
- Further studied street closures and utility congestion for Alignments 4 and 5
- Combined best parts of Alignments 4 and 5
- Recommended Alignment 4/5 Hybrid
Alignment 4/5 Hybrid Facility Plan

• Modified alignments due to existing utilities
• Conducted desktop hazardous materials review
• Collected additional field observations
• Analyzed trenchless crossings
• Prepared alignment layout drawings
• Completed a hydraulic analysis
• Prepared pump station planning documents
• Estimated construction costs
Aspects Not Considered in Evaluation of Alignments

- Site specific geotechnical investigation
- Site specific soil and groundwater contamination
- Corrosion investigation and design
- Specific traffic impact study
- Field verification of existing utilities
- Electric and gas distribution
- Site specific easement acquisition process and existing easement ownership verification
Infrastructure Improvements to Ponds
Los Gatos Ponds Decisions & Additional Considerations

• Multiple pipelines to different pond sets:
 ▪ Provide operational flexibility
 ▪ Capability to have some ponds offline for maintenance while still recharging in other ponds

• NPDES permit may be required for pond recharge
5. Program Development – Supporting Studies

• Groundwater modeling
 ▪ Regulatory considerations
 ▪ Downstream well siting impacts
 ▪ Geochemistry

• Purified water utilization rate

• RO concentrate management
5a. Groundwater Modeling
Los Gatos Recharge System

- Modeled capacity ~20K AFY (max ~24K)
- Potential issues include:
 - Mounding/basement flooding
 - Seepage to creeks
 - Operations
Los Gatos System/Injection Well Modeling
5b. Purified Water Utilization Rate: Groundwater Subbasins – Overview

Legend
- Streams
- BAY; LAKE; RESERVOIR
- PERCOLATION POND
- SALT POND
- Approximate Extent of Confined Area

Groundwater Subbasins
- DWR Subbasins
 - Llagas (3-3.01)
 - Santa Clara (2-9.02)
- District Groundwater Areas
 - Santa Clara Plain
 - Coyote Valley
 - Llagas Subbasin

Hydrographic Units
- Santa Clara Plain Confined Area
- Santa Clara Plain Recharge Area
- Coyote Valley Recharge Area
- Llagas Subbasin Confined Area
- Llagas Subbasin Recharge Area
- Bedrock
Purified Water Utilization Rate:
Groundwater Subbasins – Detail
Purified Water Utilization Rate: Constraints

- Relatively full groundwater subbasin limits recharge of purified water
- Preserve SCVWD’s local surface water rights
- Los Gatos Ponds currently supplied by local surface water
Purified Water Utilization: Impact of Project Alternatives

• Mix of projects and demand projections
• Utilization ranges from 45% to ~70% on average
5c. RO Concentrate Management Plan – Sites
Key Project Objective

Develop comprehensive Reverse Osmosis Concentrate Management (ROCM) plans for five potential advanced water purification facilities (AWPFs) in collaboration with the following wastewater agencies:

• San José/Santa Clara Regional Wastewater Facility
 ▪ South San José
 ▪ SVAWPC Expansion

• Sunnyvale Water Pollution Control Plant

• Palo Alto Regional Water Quality Control Plant

• South County Regional Wastewater Authority, Gilroy
Sizing for Advanced Water Purification Sites

<table>
<thead>
<tr>
<th>AWPF Site</th>
<th>AWPF Effluent Required (mgd)</th>
<th>AWPF Permeate Production (mgd)</th>
<th>AWPF Permeate Production (afy)</th>
<th>ROC Flow (mgd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion of SVAWPC</td>
<td>30.4</td>
<td>24.0</td>
<td>25,540</td>
<td>4.2</td>
</tr>
<tr>
<td>Sunnyvale</td>
<td>10.8</td>
<td>8.5</td>
<td>9,050</td>
<td>1.5</td>
</tr>
<tr>
<td>Palo Alto</td>
<td>8.5</td>
<td>6.8</td>
<td>7,180</td>
<td>1.2</td>
</tr>
<tr>
<td>Ford Ponds satellite facility</td>
<td>5.0</td>
<td>4.0</td>
<td>4,210</td>
<td>1.0</td>
</tr>
<tr>
<td>SCRWA</td>
<td>5.0</td>
<td>4.0</td>
<td>4,210</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>59.7</td>
<td>47.3</td>
<td>50,190</td>
<td>8.6</td>
</tr>
</tbody>
</table>

| Regional AWPF | 49.4 | 39.0 | 41,520 | 6.9 |

Source: October 17, 2017 – ROC Management Plans – Workshop #2
Project Components

• Review of potential treatment options
• Site specific evaluations of ROC water quality
• Stakeholder workshops
• Engineered treatment cell pilot testing
• Develop and recommend ROC management plans for each site
Interaction with Stakeholders

Workshop #1
Discuss criteria for option differentiation
- Understanding of options
- Define assessment criteria

Workshop #2
Long list of management options
- Short list of options per site

Workshop #3
- Data collation
- Long list of Options
- Preliminary pilot test results
- Land requirements
- System configuration
- Final list of short listed options

Workshop #4
- Detailed options review
- Pilot test results
- Preferred options per site

51 of 74
ROC Management Options Considered – I

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Blending of ROC (with or without pre-treatment) with WWTP effluent and discharge to existing, shallow South Bay outfall</td>
</tr>
<tr>
<td>2</td>
<td>Blending of ROC with WWTP effluent and discharge to an existing South Bay deep water outfall (north of Dumbarton Bridge)</td>
</tr>
<tr>
<td>3</td>
<td>Discharge of ROC to sewer</td>
</tr>
<tr>
<td>4</td>
<td>Discharge of ROC to South Bay Salt Pond Restoration Project</td>
</tr>
<tr>
<td>5</td>
<td>Discharge of ROC to existing ocean outfall</td>
</tr>
<tr>
<td>6</td>
<td>Blending of ROC with effluent from SCRWA facility and discharge to Pájaro River</td>
</tr>
<tr>
<td>7</td>
<td>Discharge to head of WWTP</td>
</tr>
<tr>
<td>8</td>
<td>Centralized facility for treatment of ROC and co-discharge with effluent from the SJ-SC RWF</td>
</tr>
<tr>
<td>9</td>
<td>Use of ROC for salt water intrusion control</td>
</tr>
<tr>
<td>10</td>
<td>Discharge to Cargill Salt Ponds</td>
</tr>
</tbody>
</table>
ROC Management Options Considered – II

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Construction of a regional ROC pipeline to an existing ocean outfall</td>
</tr>
<tr>
<td>12</td>
<td>Discharge ROC to shallow water in South Bay under new NPDES permit</td>
</tr>
<tr>
<td>13</td>
<td>Discharge ROC to deep water in South Bay under new NPDES permit</td>
</tr>
<tr>
<td>14</td>
<td>Solar Evaporation/Enhanced Solar Evaporation</td>
</tr>
<tr>
<td>15</td>
<td>Centralized facility for treatment of ROC and discharge to the South Bay under new NPDES permit</td>
</tr>
<tr>
<td>16</td>
<td>Discharge of ROC to open water engineered treatment cells with subsequent discharge to South Bay under new NPDES permit</td>
</tr>
<tr>
<td>17</td>
<td>Discharge of ROC to a natural wetland</td>
</tr>
<tr>
<td>18</td>
<td>Discharge of ROC to a new ocean outfall</td>
</tr>
<tr>
<td>19</td>
<td>Zero Liquid Discharge – with or without beneficial recovery of products</td>
</tr>
<tr>
<td>20</td>
<td>Deep well injection</td>
</tr>
</tbody>
</table>
ROC Concentrate and SVAWPC Expansion

- ROC concentration analysis results are favorable.
- 24,000 AFY+ of additional potable reuse appears feasible.
- Chronic Toxicity may impact the permit conditions.
- NPDES permit compliance risk rests with the permit holder.
ROCMP Work to Date

- Two stakeholder workshops
- Meeting with regulators
- Narrowed 120 disposal options to 17 alternatives
Next Steps – I

Hydrodynamic Modeling
• New outfall / new location
• New outfall placed in the same vicinity as an existing outfall
• Use of an existing outfall (blending)
Next Steps – II

- Additional workshops
- Continued pilot study with Berkeley, Stanford, and SFEI
- Interim technical reports
- Final project report
6. Status of Capital Programs at Wastewater Facilities in Santa Clara County

- Palo Alto Regional Water Quality Control Plant
- Sunnyvale Water Pollution Control Plant
- San José -Santa Clara Regional Wastewater Facility
Objectives

• Identify Sources and Amounts of Water Available for Reuse

• Determine Non-Potable & Potable Reuse Split

• Evaluate Governance Roles & Responsibilities and Provide Recommendations

• Evaluate Potential Regional Inter-Connectivity

• Evaluate Potential for New Infrastructure
Master Plan Framework

- Governance
- Regional Planning & Integration
- Water Treatment & Contributing Sewersheds
- Economics & Funding
- Stakeholder Engagement
- Water Quality & Quantity
- Infrastructure, Assets, & Land
- Environmental, Permitting, Regulations, & RO Conc. Mgmt.
- Public Perception
- Schedule & Coordination with other Planning Efforts
Integrating Existing Systems
Reuse Can be Integrated into Our Water Supply Infrastructure
Schedule – Engagement

CWRMP Schedule – Updated 06.01.18

<table>
<thead>
<tr>
<th>Engagement</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEB</td>
<td>MAR</td>
</tr>
<tr>
<td>Key Milestones and Decisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP</td>
<td>1/25/18</td>
<td></td>
</tr>
<tr>
<td>Confirm Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Conceptual Alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update Board: Status & Conceptual Alts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm Prelim. Rankings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirm Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliver Final Master Plan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Board RW Committees
- RWG
- RDG
- ROD
- REC

Partner Agencies’ Executives
- RD
- RW
- REC
- ROD
- RDG
- RODG

Partner Agencies’ Staff Reps
- RD
- RW
- REC
- ROD
- RDG
- RODG

District Staff Coordination
- EOC
- EOD
- EOG

Core Team
- Proactive operations meeting
- Project Close-Out Meeting

Stakeholder Task Force (TF)
- TF

Regulations (DDW and RWQCB)
- RD
- RW

Independent Advisory Panel
- IDP

LEGEND
- RD = District Board
- RWG = Recycled Water Committee
- EOC = Executive Leadership Group
- RDG = Executives (OC. Executives)
- RD = District Staff Coordination
- TF = Stakeholder Task Force
- DDW = District Staff Coordination
- RWQCB = Independent Advisory Panel
8. Forming Partnerships

- San Jose
- Palo Alto/Mt View and Sunnyvale
- SFPUC/BAWSCA
8a. Partnership Development: City of San Jose

- Collaboration of South Bay Water Recycling Strategic and Master Plan
- Concerns articulated in February 15, 2017 letter to District’s Recycled Water Committee
 - Alternate RO concentrate management alternatives
 - Wastewater availability
 - Non-potable vs. potable reuse projections
 - Environmental flows
 - Private Activity analysis
 - Funding agreement for technical participation and review in final iteration
8b. Partnership Development: Palo Alto/Mountain View and Sunnyvale

<table>
<thead>
<tr>
<th>Consideration</th>
<th>Palo Alto/ Mountain View</th>
<th>Sunnyvale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Source WW Flow</td>
<td>9-12 MGD</td>
<td>10 MGD</td>
</tr>
<tr>
<td>Land</td>
<td>✦</td>
<td>✦</td>
</tr>
<tr>
<td>RO Concentrate</td>
<td>✦</td>
<td>✦</td>
</tr>
</tbody>
</table>
Potential Integration Alternatives

9 to 12 MGD

10 MGD

PA/MV NPR

Sunnyvale NPR

SBWR NPR

Additional NPR

Los Gatos Recharge Ponds

Rinconada WTP

DPR

Additional NPR

SCRWA

Exempted

RO Concentrate

Purified Water

San Francisco Bay

Central Pipeline

Penitencia WTP

South Bay Aqueduct

SFPUC/BAWSCA

Stevens Creek Pipeline
8c. Partnership Development: SFPUC/BAWSCA

• Potential to more fully utilize Purified Program capacity and/or add additional capacity

• Two phase evaluation:
 ▪ Initial screening
 o Projected amount: 5-15 MGD in excess of District’s needs
 o Define principles of participation
 o Conduct constraints analysis
 o Develop viable alternatives technical memorandum
 ▪ Develop detailed cost estimates for viable projects

• Initial phase: Upcoming decision to be made by District, SFPUC and BAWSCA
Surplus or Added Capacity

Purified Water Amount and Timing

Surplus capacity
- 6,000 AFY on average
- No direct dry year deliveries
- Banking and delivery options

Added capacity
- Subject to treated wastewater availability
- Includes dry year deliveries
9. Program Environmental Documentation/Permitting: Approach

- Board directed to proceed assuming base project.
- Prepare a Program/Project EIR
- Target final EIR for May 2019
Changes to Project Description: Addressing and Impacts

- Develop the program level review anticipating potential for changes
- Identify high-risk changes (e.g., project footprint, construction techniques, etc.)
- Determine appropriate approach to addressing changes level of variance, addendum, etc.
- Work with selected P3 to secure necessary permits (depending on role of current consultant)
10. Program Plan B

• District Board has expressed concern over the delay in coming to agreement with the City of San Jose
• Board is very interested in alternative plans
• Countywide will help define alternatives
11. Other
12. Next Steps

• Individual meetings – June 6, 2018
• Site tour – June 7, 2018
• RFP development and issuance – Fall 2018
• P3 engagement during RFP process – Fall/Winter 2018/2019